File size: 1,612 Bytes
ddead39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import gradio as gr
from openai import OpenAI
import pprint
import chromadb
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction

# Load environment variables
client = OpenAI(api_key=os.getenv("OPENAI_KEY"))
pp = pprint.PrettyPrinter(indent=4)

def generate_response(messages):
    model_name = os.getenv("MODEL_NAME")
    response = client.chat.completions.create(model=model_name, messages=messages, temperature=0.5, max_tokens=250)
    spinner.stop()
    print("Request:")
    pp.pprint(messages)
    print(f"Completion tokens: {response.usage.completion_tokens}, Prompt tokens: {response.usage.prompt_tokens}, Total tokens: {response.usage.total_tokens}")
    return response.choices[0].message

def chat_interface(user_input):
    chroma_client = chromadb.Client()
    embedding_function = OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_KEY"), model_name=os.getenv("EMBEDDING_MODEL"))
    collection = chroma_client.create_collection(name="conversations", embedding_function=embedding_function)

    messages = [{"role": "system", "content": "You are a kind and friendly chatbot"}]
    results = collection.query(query_texts=[user_input], n_results=2)
    for res in results['documents'][0]:
        messages.append({"role": "user", "content": f"previous chat: {res}"})
    messages.append({"role": "user", "content": user_input})

    response = generate_response(messages)
    return response

def main():
    interface = gr.Interface(fn=chat_interface, inputs="text", outputs="text", title="Chatbot Interface")
    interface.launch()

if __name__ == "__main__":
    main()