Spaces:
Runtime error
Runtime error
File size: 1,471 Bytes
6d26209 1b7edf3 6d26209 e12eb34 6a0e854 e12eb34 1b7edf3 6d26209 a3f57dc 6d26209 7925913 1b7edf3 6d26209 1b7edf3 6d26209 1b7edf3 a3f57dc 1b7edf3 6d26209 a3f57dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline
from datasets import Dataset, DatasetDict
import pandas as pd
import numpy as np
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments
token = os.environ.get('token', None)
huggingface-cli login --token token
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
def tokenize_function(examples):
return tokenizer(examples['text'], padding=True, truncation=True,
max_length=256)
def predict(text):
# Convert test dataframe to Hugging Face
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
# Apply the tokenization function to the train dataset
train_dataset1 = test_dataset.map(tokenize_function, batched=True,)
predictions, label_probs, _ = trainer.predict(train_dataset1)
y_pred = np.argmax(predictions, axis=1)
return y_pred
# Create Gradio interface
text_input = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...")
output_text = gr.Textbox(label="Predicted Sentiment")
test_args = TrainingArguments(
do_train=False,
do_predict=True,
per_device_eval_batch_size = 2
)
trainer = Trainer(
model=model,
args=test_args,
)
iface = gr.Interface(fn=predict, inputs=text_input, outputs=output_text)
iface.launch(share=True) |