Qwen2vl_RAG / app.py
Pranathi1's picture
Update app.py
70db8bd verified
import streamlit as st
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import re
def highlight_text(text, term):
highlighted_text = re.sub(f"({term})", r'<mark>\1</mark>', text, flags=re.IGNORECASE)
return highlighted_text
@st.cache_resource
def load_models():
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True,
torch_dtype=torch.bfloat16).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
return model, processor, RAG
if 'is_indexed' not in st.session_state:
st.session_state['is_indexed'] = False
st.title("Image to Text Extraction and Search with Highlighting")
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
# Save the uploaded image to a temporary file
temp_file_path = f"temp_{uploaded_file.name}"
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
image = Image.open(uploaded_file)
images = [image]
st.image(image, caption='Uploaded Image', use_column_width=True)
model, processor, RAG = load_models()
# Text Extraction from Image
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": "Extract the text from this image."},
],
}
]
# Process the image and text for input
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")
# Generate the text from the image using the model
generated_ids = model.generate(**inputs, max_new_tokens=5000)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
extracted_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
extracted_text = "\n".join(extracted_text) # Convert list to a single string
st.subheader("Extracted Text:")
st.write(extracted_text)
# Save the extracted text to a file
with open("extracted_text.txt", "w", encoding="utf-8") as f:
f.write(extracted_text)
# Search Query
query = st.text_input("Search in Extracted Text", "")
if query:
# If the query is a single word, highlight its occurrences
if len(query.split()) == 1:
# Highlight the search term in the extracted text
highlighted_text = highlight_text(extracted_text, query)
st.subheader("Search Result (Word Occurrences):")
st.markdown(highlighted_text, unsafe_allow_html=True)
# If the query is more than one word, use RAG for Intelli search
else:
# Only index the image once
if not st.session_state['is_indexed']:
try:
RAG.index(
input_path=temp_file_path, # Use the local file path for indexing
index_name="image_index", # index will be saved at index_root/index_name/
store_collection_with_index=False,
overwrite=True
)
st.session_state['is_indexed'] = True # Mark document as indexed
except Exception as e:
st.error(f"Error during indexing: {str(e)}")
# Perform search using the query
try:
results = RAG.search(query, k=1)
query_image_index = results[0]["page_num"] - 1
# Get the result text related to the query
query_messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[query_image_index],
},
{"type": "text", "text": query},
],
}
]
# Generate the answer using the RAG model
text = processor.apply_chat_template(
query_messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")
generated_ids_query = model.generate(**inputs, max_new_tokens=1000)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids_query)
]
query_result = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Highlight the query within the result
highlighted_result = highlight_text("\n".join(query_result), query)
# Display the query result
st.subheader("Search Result (Intelli Answer):")
st.markdown(highlighted_result, unsafe_allow_html=True)
except Exception as e:
st.error(f"Error during search: {str(e)}")