import streamlit as st from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch from PIL import Image import re def highlight_text(text, term): highlighted_text = re.sub(f"({term})", r'\1', text, flags=re.IGNORECASE) return highlighted_text @st.cache_resource def load_models(): RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) return model, processor, RAG if 'is_indexed' not in st.session_state: st.session_state['is_indexed'] = False st.title("Image to Text Extraction and Search with Highlighting") uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Save the uploaded image to a temporary file temp_file_path = f"temp_{uploaded_file.name}" with open(temp_file_path, "wb") as f: f.write(uploaded_file.getbuffer()) image = Image.open(uploaded_file) images = [image] st.image(image, caption='Uploaded Image', use_column_width=True) model, processor, RAG = load_models() # Text Extraction from Image messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Extract the text from this image."}, ], } ] # Process the image and text for input text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Generate the text from the image using the model generated_ids = model.generate(**inputs, max_new_tokens=5000) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] extracted_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) extracted_text = "\n".join(extracted_text) # Convert list to a single string st.subheader("Extracted Text:") st.write(extracted_text) # Save the extracted text to a file with open("extracted_text.txt", "w", encoding="utf-8") as f: f.write(extracted_text) # Search Query query = st.text_input("Search in Extracted Text", "") if query: # If the query is a single word, highlight its occurrences if len(query.split()) == 1: # Highlight the search term in the extracted text highlighted_text = highlight_text(extracted_text, query) st.subheader("Search Result (Word Occurrences):") st.markdown(highlighted_text, unsafe_allow_html=True) # If the query is more than one word, use RAG for Intelli search else: # Only index the image once if not st.session_state['is_indexed']: try: RAG.index( input_path=temp_file_path, # Use the local file path for indexing index_name="image_index", # index will be saved at index_root/index_name/ store_collection_with_index=False, overwrite=True ) st.session_state['is_indexed'] = True # Mark document as indexed except Exception as e: st.error(f"Error during indexing: {str(e)}") # Perform search using the query try: results = RAG.search(query, k=1) query_image_index = results[0]["page_num"] - 1 # Get the result text related to the query query_messages = [ { "role": "user", "content": [ { "type": "image", "image": images[query_image_index], }, {"type": "text", "text": query}, ], } ] # Generate the answer using the RAG model text = processor.apply_chat_template( query_messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") generated_ids_query = model.generate(**inputs, max_new_tokens=1000) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids_query) ] query_result = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # Highlight the query within the result highlighted_result = highlight_text("\n".join(query_result), query) # Display the query result st.subheader("Search Result (Intelli Answer):") st.markdown(highlighted_result, unsafe_allow_html=True) except Exception as e: st.error(f"Error during search: {str(e)}")