Spaces:
Sleeping
Sleeping
File size: 8,606 Bytes
e5113bc bf1fafe e5113bc bf1fafe a1ff824 1c07179 bf1fafe 7aec52d bf1fafe 7aec52d bf1fafe 7aec52d bf1fafe 7aec52d 2c416c0 5e1b314 2c416c0 c1ca45e 2c416c0 39b2d31 2c416c0 c1ca45e 2c416c0 c1ca45e 735928e 39b2d31 c1ca45e 39b2d31 c1ca45e 39b2d31 c1ca45e 595cebf 39b2d31 c1ca45e 39b2d31 c1ca45e 39b2d31 c1ca45e 39b2d31 c1ca45e 39b2d31 2c416c0 e5113bc 2c416c0 c1ca45e 2c416c0 c1ca45e e5113bc 2c416c0 c1ca45e 2c416c0 c1ca45e 2c416c0 c1ca45e 2c416c0 c1ca45e e5113bc c1ca45e e5113bc c1ca45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
from transformers import pipeline
import random
from datetime import datetime
# Initialize models with smaller, faster alternatives
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=-1 # Force CPU usage
)
# Pre-defined prompts and affirmations for different sentiments
PROMPT_TEMPLATES = {
"POSITIVE": [
"- What made this positive experience particularly meaningful to you?",
"- How can you carry this positive energy forward?",
"- Who would you like to share this joy with and why?"
],
"NEGATIVE": [
"- What can you learn from this challenging situation?",
"- What small step could you take to feel better?",
"- Who or what helps you feel supported during difficult times?"
]
}
AFFIRMATIONS = {
"POSITIVE": [
"I deserve this joy and all good things coming my way.",
"My positive energy creates positive experiences.",
"I choose to embrace and celebrate this moment."
],
"NEGATIVE": [
"This too shall pass, and I am growing stronger.",
"I trust in my ability to handle challenging situations.",
"Every experience is teaching me something valuable."
]
}
class JournalCompanion:
def __init__(self):
self.entries = []
def get_prompts(self, sentiment):
prompts = PROMPT_TEMPLATES.get(sentiment, PROMPT_TEMPLATES["POSITIVE"])
return "\n\nReflective Prompts:\n" + "\n".join(prompts)
def get_affirmation(self, sentiment):
affirmations = AFFIRMATIONS.get(sentiment, AFFIRMATIONS["POSITIVE"])
return random.choice(affirmations)
def analyze_entry(self, entry_text):
if not entry_text.strip():
return ("Please write something in your journal entry.", "", "", "")
try:
# Perform sentiment analysis
sentiment_result = sentiment_analyzer(entry_text)[0]
sentiment = sentiment_result["label"].upper()
sentiment_score = sentiment_result["score"]
except Exception as e:
print("Error during sentiment analysis:", e)
return (
"An error occurred during analysis. Please try again.",
"Error",
"Could not analyze sentiment due to an error.",
"Could not generate affirmation due to an error."
)
entry_data = {
"text": entry_text,
"timestamp": datetime.now().isoformat(),
"sentiment": sentiment,
"sentiment_score": sentiment_score
}
self.entries.append(entry_data)
# Get pre-defined responses
prompts = self.get_prompts(sentiment)
affirmation = self.get_affirmation(sentiment)
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
return message, sentiment, prompts, affirmation
def get_monthly_insights(self):
if not self.entries:
return "No entries yet to analyze."
total_entries = len(self.entries)
positive_entries = sum(1 for entry in self.entries if entry["sentiment"] == "POSITIVE")
try:
percentage_positive = (positive_entries / total_entries * 100)
percentage_negative = ((total_entries - positive_entries) / total_entries * 100)
insights = f"""Monthly Insights:
Total Entries: {total_entries}
Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
Negative Entries: {total_entries - positive_entries} ({percentage_negative:.1f}%)
"""
return insights
except ZeroDivisionError:
return "No entries available for analysis."
def create_journal_interface():
journal = JournalCompanion()
# Custom CSS for better styling
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
* {
font-family: 'Roboto', sans-serif;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 2rem;
background: linear-gradient(135deg, #2196f3 0%, #26c6da 100%);
padding: 2rem;
border-radius: 15px;
color: #ffffff;
}
.input-container {
background: white;
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.output-container {
background: #f8f9fa;
border-radius: 15px;
padding: 20px;
margin-top: 20px;
}
.custom-button {
background: linear-gradient(135deg, #009688 0%, #0072ff 100%);
border: none;
padding: 10px 20px;
border-radius: 8px;
color: white;
font-weight: bold;
cursor: pointer;
transition: transform 0.2s, box-shadow 0.2s;
}
.custom-button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 114, 255, 0.4);
}
.card {
background: white;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
transition: transform 0.2s;
}
.card:hover {
transform: translateY(-2px);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
.result-animation {
animation: fadeIn 0.5s ease-out;
}
@media (max-width: 768px) {
.container {
padding: 10px;
}
.header {
padding: 1rem;
}
}
"""
with gr.Blocks(css=custom_css, title="AI Journal Companion") as interface:
with gr.Column(elem_classes="container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# π AI Journal Companion")
gr.Markdown("Transform your thoughts into insights with AI-powered journaling", elem_classes="subtitle")
with gr.Row():
with gr.Column(scale=1, elem_classes="input-container"):
entry_input = gr.Textbox(
label="Write Your Thoughts",
placeholder="Share what's on your mind...",
lines=8,
elem_classes="journal-input"
)
submit_btn = gr.Button("β¨ Analyze Entry", variant="primary", elem_classes="custom-button")
with gr.Column(scale=1, elem_classes="output-container"):
with gr.Column(elem_classes="card result-animation"):
result_message = gr.Markdown(label="Analysis")
sentiment_output = gr.Textbox(label="Emotional Tone", elem_classes="sentiment-output")
with gr.Column(elem_classes="card result-animation"):
prompt_output = gr.Markdown(label="Reflection Prompts", elem_classes="prompts-output")
with gr.Column(elem_classes="card result-animation"):
affirmation_output = gr.Textbox(label="Your Daily Affirmation", elem_classes="affirmation-output")
with gr.Row(elem_classes="insights-section"):
with gr.Column(scale=1):
insights_btn = gr.Button("π View Monthly Insights", elem_classes="custom-button")
insights_output = gr.Markdown(elem_classes="card insights-card")
submit_btn.click(
fn=journal.analyze_entry,
inputs=[entry_input],
outputs=[result_message, sentiment_output, prompt_output, affirmation_output]
)
insights_btn.click(
fn=journal.get_monthly_insights,
inputs=[],
outputs=[insights_output]
)
return interface
if __name__ == "__main__":
interface = create_journal_interface()
interface.launch()
|