File size: 1,471 Bytes
ac39532
 
 
 
02ed10a
5e2c515
ac39532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7edba3e
ac39532
 
 
 
 
62179df
ac39532
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
API_URL = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base"

# Helper functions
import requests, json
import io
import base64 
#Image-to-text endpoint
def get_completion(inputs, parameters=None, ENDPOINT_URL=API_URL): 
    hf_api_key = "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"
    headers = {
      "Content-Type": "application/json"
    }
    data = { "inputs": inputs }
    if parameters is not None:
        data.update({"parameters": parameters})
    response = requests.request("POST",
                                ENDPOINT_URL,
                                headers=headers,
                                data=json.dumps(data))
    return json.loads(response.content.decode("utf-8"))
import gradio as gr 

def image_to_base64_str(pil_image):
    byte_arr = io.BytesIO()
    pil_image.save(byte_arr, format='PNG')
    byte_arr = byte_arr.getvalue()
    return str(base64.b64encode(byte_arr).decode('utf-8'))

def captioner(image):
    base64_image = image_to_base64_str(image)
    result = get_completion(base64_image)
    return result[0]['generated_text']


demo = gr.Interface(fn=captioner,
                    inputs=[gr.Image(label="Upload image", type="pil")],
                    outputs=[gr.Textbox(label="Caption")],
                    title="Image Captioning with BLIP",
                    description="Caption any image using the BLIP model",
                    allow_flagging="never")

demo.launch(inline=False)