Create salesforce_ocr_patient_registration.py
Browse files
salesforce_ocr_patient_registration.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from paddleocr import PaddleOCR
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import re
|
7 |
+
from simple_salesforce import Salesforce
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from io import BytesIO
|
11 |
+
import kaleido
|
12 |
+
|
13 |
+
# Attribute mappings: readable names to Salesforce API names
|
14 |
+
ATTRIBUTE_MAPPING = {
|
15 |
+
"Name": "Name__c",
|
16 |
+
"Age": "Age__c",
|
17 |
+
"Gender": "Gender__c",
|
18 |
+
"Phone Number": "Phone__c"
|
19 |
+
}
|
20 |
+
|
21 |
+
# Salesforce credentials
|
22 |
+
SALESFORCE_USERNAME = "[email protected]"
|
23 |
+
SALESFORCE_PASSWORD = "HMS@2025"
|
24 |
+
SALESFORCE_SECURITY_TOKEN = "5W0grfOaOxM9ocl3zYDgZ5CF"
|
25 |
+
|
26 |
+
# Initialize PaddleOCR
|
27 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
28 |
+
|
29 |
+
# Function to extract text using PaddleOCR
|
30 |
+
def extract_text(image):
|
31 |
+
result = ocr.ocr(image)
|
32 |
+
extracted_text = []
|
33 |
+
for line in result[0]:
|
34 |
+
extracted_text.append(line[1][0])
|
35 |
+
return "\n".join(extracted_text)
|
36 |
+
|
37 |
+
# Function to extract attributes and their values
|
38 |
+
def extract_attributes(extracted_text):
|
39 |
+
attributes = {}
|
40 |
+
|
41 |
+
# Patterns for extracting personal information
|
42 |
+
patterns = {
|
43 |
+
"Name": r"Name[:\-]?\s*([A-Za-z\s]+)",
|
44 |
+
"Age": r"Age[:\-]?\s*(\d{1,3})",
|
45 |
+
"Gender": r"Gender[:\-]?\s*(Male|Female|Other)",
|
46 |
+
"Phone Number": r"Phone[:\-]?\s*(\+?\d{10,12})"
|
47 |
+
}
|
48 |
+
|
49 |
+
for readable_attr, pattern in patterns.items():
|
50 |
+
match = re.search(pattern, extracted_text, re.IGNORECASE)
|
51 |
+
if match:
|
52 |
+
attributes[readable_attr] = match.group(1).strip()
|
53 |
+
|
54 |
+
return attributes
|
55 |
+
|
56 |
+
# Function to filter attributes for valid Salesforce fields
|
57 |
+
def filter_valid_attributes(attributes, valid_fields):
|
58 |
+
return {ATTRIBUTE_MAPPING[key]: value for key, value in attributes.items() if ATTRIBUTE_MAPPING[key] in valid_fields}
|
59 |
+
|
60 |
+
# Function to interact with Salesforce
|
61 |
+
def interact_with_salesforce(attributes):
|
62 |
+
try:
|
63 |
+
sf = Salesforce(
|
64 |
+
username=SALESFORCE_USERNAME,
|
65 |
+
password=SALESFORCE_PASSWORD,
|
66 |
+
security_token=SALESFORCE_SECURITY_TOKEN
|
67 |
+
)
|
68 |
+
|
69 |
+
object_name = "Patient_Registration__c" # Using custom Patient Registration object
|
70 |
+
sf_object = sf.__getattr__(object_name)
|
71 |
+
schema = sf_object.describe()
|
72 |
+
valid_fields = {field["name"] for field in schema["fields"]}
|
73 |
+
|
74 |
+
filtered_attributes = filter_valid_attributes(attributes, valid_fields)
|
75 |
+
|
76 |
+
# Create a new record in Salesforce
|
77 |
+
result = sf_object.create(filtered_attributes)
|
78 |
+
return f"β
Successfully created Patient Registration record with ID: {result['id']}."
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return f"β Error interacting with Salesforce: {str(e)}"
|
82 |
+
|
83 |
+
# Function to process image and extract attributes
|
84 |
+
def process_image(image):
|
85 |
+
extracted_text = extract_text(image)
|
86 |
+
if not extracted_text:
|
87 |
+
return "No text detected in the image.", None, None
|
88 |
+
|
89 |
+
attributes = extract_attributes(extracted_text)
|
90 |
+
|
91 |
+
# Ensure all attributes are present, even if empty
|
92 |
+
for attr in ATTRIBUTE_MAPPING.keys():
|
93 |
+
if attr not in attributes:
|
94 |
+
attributes[attr] = ""
|
95 |
+
|
96 |
+
# Convert attributes to DataFrame for editing
|
97 |
+
df = pd.DataFrame(list(attributes.items()), columns=["Attribute", "Value"])
|
98 |
+
return f"Extracted Text:\n{extracted_text}", df, None
|
99 |
+
|
100 |
+
# Function to handle edited attributes and export to Salesforce
|
101 |
+
def export_to_salesforce(edited_df):
|
102 |
+
try:
|
103 |
+
# Convert edited DataFrame back to dictionary
|
104 |
+
edited_attributes = dict(zip(edited_df["Attribute"], edited_df["Value"]))
|
105 |
+
|
106 |
+
# Export to Salesforce
|
107 |
+
message = interact_with_salesforce(edited_attributes)
|
108 |
+
return message
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
return f"β Error exporting to Salesforce: {str(e)}"
|
112 |
+
|
113 |
+
# Function to pull structured data from Salesforce and display as a table
|
114 |
+
def pull_data_from_salesforce():
|
115 |
+
try:
|
116 |
+
sf = Salesforce(
|
117 |
+
username=SALESFORCE_USERNAME,
|
118 |
+
password=SALESFORCE_PASSWORD,
|
119 |
+
security_token=SALESFORCE_SECURITY_TOKEN
|
120 |
+
)
|
121 |
+
|
122 |
+
query = "SELECT Name__c, Age__c, Gender__c, Phone__c FROM Patient_Registration__c WHERE Age__c != NULL LIMIT 100"
|
123 |
+
response = sf.query_all(query)
|
124 |
+
records = response.get("records", [])
|
125 |
+
|
126 |
+
if not records:
|
127 |
+
return "No data found in Salesforce.", None, None, None
|
128 |
+
|
129 |
+
df = pd.DataFrame(records)
|
130 |
+
df = df.drop(columns=['attributes'], errors='ignore')
|
131 |
+
|
132 |
+
# Rename columns for better readability
|
133 |
+
df.rename(columns={
|
134 |
+
"Name__c": "Name",
|
135 |
+
"Age__c": "Age",
|
136 |
+
"Gender__c": "Gender",
|
137 |
+
"Phone__c": "Phone Number"
|
138 |
+
}, inplace=True)
|
139 |
+
|
140 |
+
excel_path = "salesforce_patient_registration.xlsx"
|
141 |
+
df.to_excel(excel_path, index=False)
|
142 |
+
|
143 |
+
# Generate a bar graph for age distribution
|
144 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
145 |
+
df['Age'] = pd.to_numeric(df['Age'], errors='coerce')
|
146 |
+
df.groupby('Age').size().plot(kind='bar', ax=ax)
|
147 |
+
ax.set_title("Age Distribution of Patient Registrations")
|
148 |
+
ax.set_xlabel("Age")
|
149 |
+
ax.set_ylabel("Number of Patients")
|
150 |
+
plt.xticks(rotation=45, ha="right", fontsize=10)
|
151 |
+
plt.tight_layout()
|
152 |
+
buffer = BytesIO()
|
153 |
+
plt.savefig(buffer, format="png")
|
154 |
+
buffer.seek(0)
|
155 |
+
img = Image.open(buffer)
|
156 |
+
|
157 |
+
return df, excel_path, img
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
return f"Error fetching data: {str(e)}", None, None, None
|
161 |
+
|
162 |
+
# Gradio Interface
|
163 |
+
def app():
|
164 |
+
with gr.Blocks() as demo:
|
165 |
+
with gr.Tab("π₯ OCR Processing"):
|
166 |
+
with gr.Row():
|
167 |
+
image_input = gr.Image(type="numpy", label="π Upload Image")
|
168 |
+
extract_button = gr.Button("Extract Text and Attributes")
|
169 |
+
extracted_text_output = gr.Text(label="π Extracted Image Data")
|
170 |
+
editable_df_output = gr.Dataframe(label="βοΈ Edit Attributes (Key-Value Pairs)", interactive=True)
|
171 |
+
ok_button = gr.Button("OK")
|
172 |
+
result_output = gr.Text(label="π Result")
|
173 |
+
|
174 |
+
with gr.Tab("π Salesforce Data"):
|
175 |
+
pull_button = gr.Button("Pull Data from Salesforce")
|
176 |
+
salesforce_data_output = gr.Dataframe(label="π Salesforce Data")
|
177 |
+
excel_download_output = gr.File(label="π₯ Download Excel")
|
178 |
+
graph_output = gr.Image(label="π Age Distribution Graph")
|
179 |
+
|
180 |
+
# Define button actions
|
181 |
+
extract_button.click(
|
182 |
+
fn=process_image,
|
183 |
+
inputs=[image_input],
|
184 |
+
outputs=[extracted_text_output, editable_df_output, result_output]
|
185 |
+
)
|
186 |
+
ok_button.click(
|
187 |
+
fn=export_to_salesforce,
|
188 |
+
inputs=[editable_df_output],
|
189 |
+
outputs=[result_output]
|
190 |
+
)
|
191 |
+
pull_button.click(
|
192 |
+
fn=pull_data_from_salesforce,
|
193 |
+
inputs=[],
|
194 |
+
outputs=[salesforce_data_output, excel_download_output, graph_output]
|
195 |
+
)
|
196 |
+
|
197 |
+
return demo
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
app().launch(share=True)
|