Spaces:
Sleeping
Sleeping
Commit
·
8dcd1f3
1
Parent(s):
5e4b22f
initialized the first deployment
Browse files- 41598_2023_41576_Fig1_HTML.jpg +0 -0
- Dockerfile +20 -0
- __pycache__/chatbot.cpython-313.pyc +0 -0
- __pycache__/mediseg.cpython-313.pyc +0 -0
- app.py +392 -0
- app/__init__.py +0 -0
- app/__pycache__/__init__.cpython-313.pyc +0 -0
- app/__pycache__/chatbot.cpython-313.pyc +0 -0
- app/__pycache__/database.cpython-313.pyc +0 -0
- app/__pycache__/main.cpython-313.pyc +0 -0
- app/__pycache__/mediseg.cpython-313.pyc +0 -0
- app/chatbot.py +149 -0
- app/database.py +14 -0
- app/main.py +66 -0
- app/mediseg.py +372 -0
- disease_sympts_prec_full.csv +0 -0
- images.jpg +0 -0
- models/best_metric_model (4).pth +3 -0
- models/brain_tumor_unet_multiclass.pth +3 -0
- models/endoscopy_unet.pth +3 -0
- models/pneumonia_resnet18.pth +3 -0
- oligodendroglioma-banner.jpg +0 -0
- requirements.txt +16 -0
- symptom_assessment.py +31 -0
- templates/index.html +51 -0
41598_2023_41576_Fig1_HTML.jpg
ADDED
![]() |
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python 3.9 image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Create a non-root user and switch to it
|
5 |
+
RUN useradd -m -u 1000 user
|
6 |
+
USER user
|
7 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
8 |
+
|
9 |
+
# Set working directory
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
# Copy requirements and install
|
13 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
14 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
15 |
+
|
16 |
+
# Copy the rest of the app
|
17 |
+
COPY --chown=user . /app
|
18 |
+
|
19 |
+
# Expose port 7860 and run the app with uvicorn
|
20 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
__pycache__/chatbot.cpython-313.pyc
ADDED
Binary file (1.54 kB). View file
|
|
__pycache__/mediseg.cpython-313.pyc
ADDED
Binary file (26.8 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os, io, base64, cv2, torch, numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from flask import Flask, request, render_template, jsonify
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchvision.models as models
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from monai.transforms import EnsureChannelFirst, ScaleIntensity, Resize, ToTensor
|
10 |
+
|
11 |
+
# Enable debug logging
|
12 |
+
import logging
|
13 |
+
logging.basicConfig(level=logging.DEBUG)
|
14 |
+
|
15 |
+
# -------------------------------
|
16 |
+
# Global Setup
|
17 |
+
# -------------------------------
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
def pil_to_base64(pil_img):
|
20 |
+
buff = io.BytesIO()
|
21 |
+
pil_img.save(buff, format="JPEG")
|
22 |
+
return base64.b64encode(buff.getvalue()).decode("utf-8")
|
23 |
+
|
24 |
+
# -------------------------------
|
25 |
+
# 1. CLASSIFIER MODULE (DenseNet121 via MONAI)
|
26 |
+
# -------------------------------
|
27 |
+
CLASS_NAMES = ['AbdomenCT', 'BreastMRI', 'Chest Xray', 'ChestCT',
|
28 |
+
'Endoscopy', 'Hand Xray', 'HeadCT', 'HeadMRI']
|
29 |
+
from monai.networks.nets import DenseNet121
|
30 |
+
def load_classifier_model(model_path):
|
31 |
+
model = DenseNet121(
|
32 |
+
spatial_dims=2,
|
33 |
+
in_channels=3,
|
34 |
+
out_channels=len(CLASS_NAMES)
|
35 |
+
).to(device)
|
36 |
+
state_dict = torch.load(model_path, map_location=device)
|
37 |
+
if isinstance(state_dict, dict) and "state_dict" in state_dict:
|
38 |
+
state_dict = state_dict["state_dict"]
|
39 |
+
model.load_state_dict(state_dict, strict=False)
|
40 |
+
model.eval()
|
41 |
+
return model
|
42 |
+
|
43 |
+
def load_and_preprocess_image_classifier(image_path):
|
44 |
+
image_path = image_path.strip()
|
45 |
+
if image_path.lower().endswith((".jpg", ".jpeg", ".png")):
|
46 |
+
image = Image.open(image_path).convert("RGB")
|
47 |
+
image = np.array(image)
|
48 |
+
elif image_path.lower().endswith((".nii", ".nii.gz")):
|
49 |
+
import nibabel as nib
|
50 |
+
image = nib.load(image_path).get_fdata()
|
51 |
+
image = np.squeeze(image)
|
52 |
+
if len(image.shape) == 4:
|
53 |
+
image = image[..., 0]
|
54 |
+
if len(image.shape) == 3:
|
55 |
+
image = image[:, :, image.shape[2] // 2]
|
56 |
+
if len(image.shape) == 2:
|
57 |
+
image = np.stack([image]*3, axis=-1)
|
58 |
+
elif image_path.lower().endswith(".dcm"):
|
59 |
+
import pydicom
|
60 |
+
dicom_data = pydicom.dcmread(image_path)
|
61 |
+
image = dicom_data.pixel_array
|
62 |
+
if len(image.shape) == 2:
|
63 |
+
image = np.stack([image]*3, axis=-1)
|
64 |
+
else:
|
65 |
+
raise ValueError("Unsupported file format!")
|
66 |
+
if len(image.shape) == 3 and image.shape[-1] == 3:
|
67 |
+
image = np.transpose(image, (2, 0, 1))
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Unexpected image shape: {image.shape}")
|
70 |
+
image = torch.tensor(image, dtype=torch.float32)
|
71 |
+
image = ScaleIntensity()(image)
|
72 |
+
image = Resize((224,224))(image)
|
73 |
+
image = image.unsqueeze(0)
|
74 |
+
return image.to(device)
|
75 |
+
|
76 |
+
def classify_medical_image(image_path, classifier_model):
|
77 |
+
image_tensor = load_and_preprocess_image_classifier(image_path)
|
78 |
+
with torch.no_grad():
|
79 |
+
output = classifier_model(image_tensor)
|
80 |
+
pred_class = torch.argmax(output, dim=1).item()
|
81 |
+
return CLASS_NAMES[pred_class]
|
82 |
+
|
83 |
+
# -------------------------------
|
84 |
+
# 2. BRAIN TUMOR SEGMENTATION MODULE (UNetMulti)
|
85 |
+
# -------------------------------
|
86 |
+
class DoubleConvUNet(nn.Module):
|
87 |
+
def __init__(self, in_channels, out_channels):
|
88 |
+
super(DoubleConvUNet, self).__init__()
|
89 |
+
self.conv = nn.Sequential(
|
90 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=1),
|
91 |
+
nn.BatchNorm2d(out_channels),
|
92 |
+
nn.ReLU(inplace=True),
|
93 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1),
|
94 |
+
nn.BatchNorm2d(out_channels),
|
95 |
+
nn.ReLU(inplace=True)
|
96 |
+
)
|
97 |
+
def forward(self, x):
|
98 |
+
return self.conv(x)
|
99 |
+
|
100 |
+
class UNetMulti(nn.Module):
|
101 |
+
def __init__(self, in_channels=3, out_channels=4):
|
102 |
+
super(UNetMulti, self).__init__()
|
103 |
+
self.down1 = DoubleConvUNet(in_channels, 64)
|
104 |
+
self.pool1 = nn.MaxPool2d(2)
|
105 |
+
self.down2 = DoubleConvUNet(64, 128)
|
106 |
+
self.pool2 = nn.MaxPool2d(2)
|
107 |
+
self.down3 = DoubleConvUNet(128, 256)
|
108 |
+
self.pool3 = nn.MaxPool2d(2)
|
109 |
+
self.down4 = DoubleConvUNet(256, 512)
|
110 |
+
self.pool4 = nn.MaxPool2d(2)
|
111 |
+
self.bottleneck = DoubleConvUNet(512, 1024)
|
112 |
+
self.up4 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
|
113 |
+
self.conv4 = DoubleConvUNet(1024, 512)
|
114 |
+
self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
|
115 |
+
self.conv3 = DoubleConvUNet(512, 256)
|
116 |
+
self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
|
117 |
+
self.conv2 = DoubleConvUNet(256, 128)
|
118 |
+
self.up1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
|
119 |
+
self.conv1 = DoubleConvUNet(128, 64)
|
120 |
+
self.final_conv = nn.Conv2d(64, out_channels, 1)
|
121 |
+
def forward(self, x):
|
122 |
+
c1 = self.down1(x)
|
123 |
+
p1 = self.pool1(c1)
|
124 |
+
c2 = self.down2(p1)
|
125 |
+
p2 = self.pool2(c2)
|
126 |
+
c3 = self.down3(p2)
|
127 |
+
p3 = self.pool3(c3)
|
128 |
+
c4 = self.down4(p3)
|
129 |
+
p4 = self.pool4(c4)
|
130 |
+
bn = self.bottleneck(p4)
|
131 |
+
u4 = self.up4(bn)
|
132 |
+
merge4 = torch.cat([u4, c4], dim=1)
|
133 |
+
c5 = self.conv4(merge4)
|
134 |
+
u3 = self.up3(c5)
|
135 |
+
merge3 = torch.cat([u3, c3], dim=1)
|
136 |
+
c6 = self.conv3(merge3)
|
137 |
+
u2 = self.up2(c6)
|
138 |
+
merge2 = torch.cat([u2, c2], dim=1)
|
139 |
+
c7 = self.conv2(merge2)
|
140 |
+
u1 = self.up1(c7)
|
141 |
+
merge1 = torch.cat([u1, c1], dim=1)
|
142 |
+
c8 = self.conv1(merge1)
|
143 |
+
return self.final_conv(c8)
|
144 |
+
|
145 |
+
def process_brain_tumor_return(image, model_path="models/brain_tumor_unet_multiclass.pth"):
|
146 |
+
logging.debug("Processing brain tumor segmentation")
|
147 |
+
model = UNetMulti(in_channels=3, out_channels=4).to(device)
|
148 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
149 |
+
model.eval()
|
150 |
+
transform_img = transforms.Compose([
|
151 |
+
transforms.Resize((256,256)),
|
152 |
+
transforms.ToTensor()
|
153 |
+
])
|
154 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
155 |
+
with torch.no_grad():
|
156 |
+
output = model(input_tensor)
|
157 |
+
preds = torch.argmax(output, dim=1).squeeze().cpu().numpy()
|
158 |
+
image_np = transform_img(image).permute(1,2,0).cpu().numpy()
|
159 |
+
overlay = cv2.applyColorMap(np.uint8(255 * preds/np.max(preds+1e-8)), cv2.COLORMAP_JET)
|
160 |
+
overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
|
161 |
+
blended = cv2.addWeighted(np.uint8(image_np*255), 0.6, overlay, 0.4, 0)
|
162 |
+
orig_pil = Image.fromarray((image_np*255).astype(np.uint8))
|
163 |
+
mask_pil = Image.fromarray(overlay)
|
164 |
+
overlay_pil = Image.fromarray(blended)
|
165 |
+
return {
|
166 |
+
"original": pil_to_base64(orig_pil),
|
167 |
+
"mask": pil_to_base64(mask_pil),
|
168 |
+
"overlay": pil_to_base64(overlay_pil)
|
169 |
+
}
|
170 |
+
|
171 |
+
# -------------------------------
|
172 |
+
# 3. ENDOSCOPY POLYP DETECTION MODULE (Binary UNet)
|
173 |
+
# -------------------------------
|
174 |
+
class UNetBinary(nn.Module):
|
175 |
+
def __init__(self, in_channels=3, out_channels=1):
|
176 |
+
super(UNetBinary, self).__init__()
|
177 |
+
self.down1 = DoubleConvUNet(in_channels, 64)
|
178 |
+
self.pool1 = nn.MaxPool2d(2)
|
179 |
+
self.down2 = DoubleConvUNet(64, 128)
|
180 |
+
self.pool2 = nn.MaxPool2d(2)
|
181 |
+
self.down3 = DoubleConvUNet(128, 256)
|
182 |
+
self.pool3 = nn.MaxPool2d(2)
|
183 |
+
self.down4 = DoubleConvUNet(256, 512)
|
184 |
+
self.pool4 = nn.MaxPool2d(2)
|
185 |
+
self.bottleneck = DoubleConvUNet(512, 1024)
|
186 |
+
self.up4 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
|
187 |
+
self.conv4 = DoubleConvUNet(1024, 512)
|
188 |
+
self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
|
189 |
+
self.conv3 = DoubleConvUNet(512, 256)
|
190 |
+
self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
|
191 |
+
self.conv2 = DoubleConvUNet(256, 128)
|
192 |
+
self.up1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
|
193 |
+
self.conv1 = DoubleConvUNet(128, 64)
|
194 |
+
self.final_conv = nn.Conv2d(64, out_channels, 1)
|
195 |
+
def forward(self, x):
|
196 |
+
c1 = self.down1(x)
|
197 |
+
p1 = self.pool1(c1)
|
198 |
+
c2 = self.down2(p1)
|
199 |
+
p2 = self.pool2(c2)
|
200 |
+
c3 = self.down3(p2)
|
201 |
+
p3 = self.pool3(c3)
|
202 |
+
c4 = self.down4(p3)
|
203 |
+
p4 = self.pool4(c4)
|
204 |
+
bn = self.bottleneck(p4)
|
205 |
+
u4 = self.up4(bn)
|
206 |
+
merge4 = torch.cat([u4, c4], dim=1)
|
207 |
+
c5 = self.conv4(merge4)
|
208 |
+
u3 = self.up3(c5)
|
209 |
+
merge3 = torch.cat([u3, c3], dim=1)
|
210 |
+
c6 = self.conv3(merge3)
|
211 |
+
u2 = self.up2(c6)
|
212 |
+
merge2 = torch.cat([u2, c2], dim=1)
|
213 |
+
c7 = self.conv2(merge2)
|
214 |
+
u1 = self.up1(c7)
|
215 |
+
merge1 = torch.cat([u1, c1], dim=1)
|
216 |
+
c8 = self.conv1(merge1)
|
217 |
+
return self.final_conv(c8)
|
218 |
+
|
219 |
+
def process_endoscopy_return(image, model_path="models/endoscopy_unet.pth"):
|
220 |
+
model = UNetBinary(in_channels=3, out_channels=1).to(device)
|
221 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
222 |
+
model.eval()
|
223 |
+
transform_img = transforms.Compose([
|
224 |
+
transforms.Resize((256,256)),
|
225 |
+
transforms.ToTensor()
|
226 |
+
])
|
227 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
228 |
+
with torch.no_grad():
|
229 |
+
output = model(input_tensor)
|
230 |
+
prob = torch.sigmoid(output)
|
231 |
+
mask = (prob > 0.5).float().squeeze().cpu().numpy()
|
232 |
+
image_np = transform_img(image).permute(1,2,0).cpu().numpy()
|
233 |
+
overlay = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
|
234 |
+
overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
|
235 |
+
blended = cv2.addWeighted(np.uint8(image_np*255), 0.6, overlay, 0.4, 0)
|
236 |
+
orig_pil = Image.fromarray((image_np*255).astype(np.uint8))
|
237 |
+
mask_pil = Image.fromarray(overlay)
|
238 |
+
overlay_pil = Image.fromarray(blended)
|
239 |
+
return {
|
240 |
+
"original": pil_to_base64(orig_pil),
|
241 |
+
"mask": pil_to_base64(mask_pil),
|
242 |
+
"overlay": pil_to_base64(overlay_pil)
|
243 |
+
}
|
244 |
+
|
245 |
+
# -------------------------------
|
246 |
+
# 4. PNEUMONIA DETECTION MODULE (Grad-CAM on ResNet18)
|
247 |
+
# -------------------------------
|
248 |
+
class GradCAM_Pneumonia:
|
249 |
+
def __init__(self, model, target_layer):
|
250 |
+
self.model = model
|
251 |
+
self.target_layer = target_layer
|
252 |
+
self.gradients = None
|
253 |
+
self.activations = None
|
254 |
+
self.hook_handles = []
|
255 |
+
self._register_hooks()
|
256 |
+
def _register_hooks(self):
|
257 |
+
def forward_hook(module, input, output):
|
258 |
+
self.activations = output.detach()
|
259 |
+
def backward_hook(module, grad_in, grad_out):
|
260 |
+
self.gradients = grad_out[0].detach()
|
261 |
+
handle1 = self.target_layer.register_forward_hook(forward_hook)
|
262 |
+
handle2 = self.target_layer.register_backward_hook(backward_hook)
|
263 |
+
self.hook_handles.extend([handle1, handle2])
|
264 |
+
def remove_hooks(self):
|
265 |
+
for handle in self.hook_handles:
|
266 |
+
handle.remove()
|
267 |
+
def generate(self, input_image, target_class=None):
|
268 |
+
output = self.model(input_image)
|
269 |
+
if target_class is None:
|
270 |
+
target_class = output.argmax(dim=1).item()
|
271 |
+
self.model.zero_grad()
|
272 |
+
one_hot = torch.zeros_like(output)
|
273 |
+
one_hot[0, target_class] = 1
|
274 |
+
with torch.enable_grad():
|
275 |
+
output.backward(gradient=one_hot, retain_graph=True)
|
276 |
+
weights = self.gradients.mean(dim=(2,3), keepdim=True)
|
277 |
+
cam = (weights * self.activations).sum(dim=1, keepdim=True)
|
278 |
+
cam = F.relu(cam)
|
279 |
+
cam = cam.squeeze().cpu().numpy()
|
280 |
+
_, _, H, W = input_image.shape
|
281 |
+
cam = cv2.resize(cam, (W, H))
|
282 |
+
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam) + 1e-8)
|
283 |
+
return cam, output
|
284 |
+
|
285 |
+
def process_pneumonia_return(image, model_path="models/pneumonia_resnet18.pth"):
|
286 |
+
model = models.resnet18(pretrained=False)
|
287 |
+
num_ftrs = model.fc.in_features
|
288 |
+
model.fc = nn.Linear(num_ftrs, 2) # 2 classes: normal and pneumonia
|
289 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
290 |
+
model.to(device)
|
291 |
+
model.eval()
|
292 |
+
grad_cam = GradCAM_Pneumonia(model, model.layer4)
|
293 |
+
|
294 |
+
transform_img = transforms.Compose([
|
295 |
+
transforms.Resize((224,224)),
|
296 |
+
transforms.ToTensor(),
|
297 |
+
transforms.Normalize(mean=[0.485,0.456,0.406],
|
298 |
+
std=[0.229,0.224,0.225])
|
299 |
+
])
|
300 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
301 |
+
# Enable gradient tracking for the input tensor
|
302 |
+
input_tensor.requires_grad_()
|
303 |
+
# Do NOT wrap the following call with torch.no_grad()
|
304 |
+
cam, output = grad_cam.generate(input_tensor)
|
305 |
+
predicted_class = output.argmax(dim=1).item()
|
306 |
+
|
307 |
+
label_text = "Pneumonia" if predicted_class == 1 else "Normal"
|
308 |
+
|
309 |
+
def get_bounding_box(heatmap, thresh=0.5, min_area=100):
|
310 |
+
heat_uint8 = np.uint8(255 * heatmap)
|
311 |
+
ret, binary = cv2.threshold(heat_uint8, int(thresh*255), 255, cv2.THRESH_BINARY)
|
312 |
+
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
313 |
+
if len(contours)==0:
|
314 |
+
return None
|
315 |
+
largest = max(contours, key=cv2.contourArea)
|
316 |
+
if cv2.contourArea(largest) < min_area:
|
317 |
+
return None
|
318 |
+
x, y, w, h = cv2.boundingRect(largest)
|
319 |
+
return (x, y, w, h)
|
320 |
+
|
321 |
+
bbox = None
|
322 |
+
if predicted_class == 1:
|
323 |
+
bbox = get_bounding_box(cam, thresh=0.5, min_area=100)
|
324 |
+
|
325 |
+
resized_image = image.resize((224,224))
|
326 |
+
image_np = np.array(resized_image)
|
327 |
+
overlay = image_np.copy()
|
328 |
+
if bbox is not None:
|
329 |
+
x, y, w, h = bbox
|
330 |
+
cv2.rectangle(overlay, (x, y), (x+w, y+h), (255,0,0), 2)
|
331 |
+
cv2.putText(overlay, label_text, (10,25), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,0),2)
|
332 |
+
|
333 |
+
heatmap_color = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP_JET)
|
334 |
+
heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
|
335 |
+
|
336 |
+
orig_pil = Image.fromarray(image_np)
|
337 |
+
heatmap_pil = Image.fromarray(heatmap_color)
|
338 |
+
overlay_pil = Image.fromarray(overlay)
|
339 |
+
grad_cam.remove_hooks()
|
340 |
+
return {
|
341 |
+
"original": pil_to_base64(orig_pil),
|
342 |
+
"mask": pil_to_base64(heatmap_pil),
|
343 |
+
"overlay": pil_to_base64(overlay_pil)
|
344 |
+
}
|
345 |
+
|
346 |
+
# -------------------------------
|
347 |
+
# 5. COMPLETE PIPELINE FUNCTION
|
348 |
+
# -------------------------------
|
349 |
+
def complete_pipeline(image_path):
|
350 |
+
classifier_model = load_classifier_model("models/best_metric_model (4).pth")
|
351 |
+
predicted_modality = classify_medical_image(image_path, classifier_model)
|
352 |
+
print(f"Detected modality: {predicted_modality}")
|
353 |
+
original_image = Image.open(image_path).convert("RGB")
|
354 |
+
results = {"predicted_modality": predicted_modality}
|
355 |
+
if predicted_modality in ["HeadCT", "HeadMRI"]:
|
356 |
+
results["specialized"] = process_brain_tumor_return(original_image, "models/brain_tumor_unet_multiclass.pth")
|
357 |
+
elif predicted_modality == "Endoscopy":
|
358 |
+
results["specialized"] = process_endoscopy_return(original_image, "models/endoscopy_unet.pth")
|
359 |
+
elif predicted_modality == "Chest Xray":
|
360 |
+
results["specialized"] = process_pneumonia_return(original_image, "models/pneumonia_resnet18.pth")
|
361 |
+
else:
|
362 |
+
results["message"] = f"No specialized processing for modality: {predicted_modality}"
|
363 |
+
return results
|
364 |
+
|
365 |
+
# -------------------------------
|
366 |
+
# 6. FLASK API SETUP
|
367 |
+
# -------------------------------
|
368 |
+
from flask import Flask, request, render_template, jsonify
|
369 |
+
app = Flask(__name__)
|
370 |
+
|
371 |
+
@app.route('/', methods=['GET'])
|
372 |
+
def index():
|
373 |
+
return render_template("index.html", result=None)
|
374 |
+
|
375 |
+
@app.route('/predict', methods=['POST'])
|
376 |
+
def predict():
|
377 |
+
if 'file' not in request.files:
|
378 |
+
return render_template("index.html", result={"error": "No file part in the request."})
|
379 |
+
file = request.files['file']
|
380 |
+
if file.filename == '':
|
381 |
+
return render_template("index.html", result={"error": "No file selected."})
|
382 |
+
temp_path = "temp_input.jpg"
|
383 |
+
file.save(temp_path)
|
384 |
+
try:
|
385 |
+
result = complete_pipeline(temp_path)
|
386 |
+
except Exception as e:
|
387 |
+
result = {"error": str(e)}
|
388 |
+
os.remove(temp_path)
|
389 |
+
return render_template("index.html", result=result)
|
390 |
+
|
391 |
+
if __name__ == '__main__':
|
392 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|
app/__init__.py
ADDED
File without changes
|
app/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (151 Bytes). View file
|
|
app/__pycache__/chatbot.cpython-313.pyc
ADDED
Binary file (8.13 kB). View file
|
|
app/__pycache__/database.cpython-313.pyc
ADDED
Binary file (956 Bytes). View file
|
|
app/__pycache__/main.cpython-313.pyc
ADDED
Binary file (3.36 kB). View file
|
|
app/__pycache__/mediseg.cpython-313.pyc
ADDED
Binary file (24.6 kB). View file
|
|
app/chatbot.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# -------------------------------
|
9 |
+
# Load disease data and preprocess
|
10 |
+
# -------------------------------
|
11 |
+
def load_disease_data(csv_path):
|
12 |
+
df = pd.read_csv(csv_path)
|
13 |
+
df.columns = df.columns.str.strip().str.lower()
|
14 |
+
df = df.fillna("")
|
15 |
+
disease_symptoms = {}
|
16 |
+
disease_precautions = {}
|
17 |
+
for _, row in df.iterrows():
|
18 |
+
disease = row["disease"].strip()
|
19 |
+
symptoms = [s.strip().lower() for s in row["symptoms"].split(",") if s.strip()]
|
20 |
+
precautions = [p.strip() for p in row["precautions"].split(",") if p.strip()]
|
21 |
+
disease_symptoms[disease] = symptoms
|
22 |
+
disease_precautions[disease] = precautions
|
23 |
+
return disease_symptoms, disease_precautions
|
24 |
+
|
25 |
+
# Load CSV data (ensure this CSV file is in the repository root)
|
26 |
+
disease_symptoms, disease_precautions = load_disease_data("disease_sympts_prec_full.csv")
|
27 |
+
known_symptoms = set()
|
28 |
+
for syms in disease_symptoms.values():
|
29 |
+
known_symptoms.update(syms)
|
30 |
+
|
31 |
+
# -------------------------------
|
32 |
+
# Build symptom vectorizer and FAISS index
|
33 |
+
# -------------------------------
|
34 |
+
vectorizer = TfidfVectorizer()
|
35 |
+
symptom_texts = [" ".join(symptoms) for symptoms in disease_symptoms.values()]
|
36 |
+
tfidf_matrix = vectorizer.fit_transform(symptom_texts).toarray()
|
37 |
+
index = faiss.IndexFlatL2(tfidf_matrix.shape[1])
|
38 |
+
index.add(np.array(tfidf_matrix, dtype=np.float32))
|
39 |
+
disease_list = list(disease_symptoms.keys())
|
40 |
+
|
41 |
+
def find_closest_disease(user_symptoms):
|
42 |
+
if not user_symptoms:
|
43 |
+
return None
|
44 |
+
user_vector = vectorizer.transform([" ".join(user_symptoms)]).toarray().astype("float32")
|
45 |
+
distances, indices = index.search(user_vector, k=1)
|
46 |
+
return disease_list[indices[0][0]]
|
47 |
+
|
48 |
+
# -------------------------------
|
49 |
+
# Load Medical NER model for symptom extraction
|
50 |
+
# -------------------------------
|
51 |
+
medical_ner = pipeline(
|
52 |
+
"ner",
|
53 |
+
model="blaze999/Medical-NER",
|
54 |
+
tokenizer="blaze999/Medical-NER",
|
55 |
+
aggregation_strategy="simple"
|
56 |
+
)
|
57 |
+
|
58 |
+
def extract_symptoms_ner(text):
|
59 |
+
results = medical_ner(text)
|
60 |
+
extracted = []
|
61 |
+
for r in results:
|
62 |
+
if "SIGN_SYMPTOM" in r["entity_group"]:
|
63 |
+
extracted.append(r["word"].lower())
|
64 |
+
return list(set(extracted))
|
65 |
+
|
66 |
+
def is_affirmative(answer):
|
67 |
+
answer_lower = answer.lower()
|
68 |
+
return any(word in answer_lower for word in ["yes", "yeah", "yep", "certainly", "sometimes", "a little"])
|
69 |
+
|
70 |
+
# -------------------------------
|
71 |
+
# Chatbot session class
|
72 |
+
# -------------------------------
|
73 |
+
class ChatbotSession:
|
74 |
+
def __init__(self):
|
75 |
+
self.conversation_history = []
|
76 |
+
self.reported_symptoms = set()
|
77 |
+
self.asked_missing = set()
|
78 |
+
self.awaiting_followup = None
|
79 |
+
self.state = "symptom_collection" # states: symptom_collection, pain, medications
|
80 |
+
# Initial greeting
|
81 |
+
greeting = "Doctor: Hello, I am your virtual doctor. What brought you in today?"
|
82 |
+
self.conversation_history.append(greeting)
|
83 |
+
self.finished = False
|
84 |
+
|
85 |
+
def process_message(self, message: str) -> str:
|
86 |
+
# State: collecting symptoms
|
87 |
+
if self.state == "symptom_collection":
|
88 |
+
if message.lower() in ["exit", "quit", "no"]:
|
89 |
+
self.state = "pain"
|
90 |
+
prompt = "Doctor: Do you experience any pain or aches? Please rate the pain on a scale of 1 to 10 (or type 'no' if none):"
|
91 |
+
self.conversation_history.append(prompt)
|
92 |
+
return prompt
|
93 |
+
# If we are waiting on a follow-up about a specific symptom
|
94 |
+
if self.awaiting_followup:
|
95 |
+
if is_affirmative(message):
|
96 |
+
self.reported_symptoms.add(self.awaiting_followup)
|
97 |
+
self.asked_missing.add(self.awaiting_followup)
|
98 |
+
self.awaiting_followup = None
|
99 |
+
else:
|
100 |
+
# Extract symptoms from message text
|
101 |
+
ner_results = extract_symptoms_ner(message)
|
102 |
+
for sym in ner_results:
|
103 |
+
if sym not in self.reported_symptoms:
|
104 |
+
self.reported_symptoms.add(sym)
|
105 |
+
# Update predicted disease
|
106 |
+
predicted_disease = find_closest_disease(list(self.reported_symptoms)) if self.reported_symptoms else None
|
107 |
+
# Check for missing symptoms if a disease is predicted
|
108 |
+
if predicted_disease:
|
109 |
+
expected = set(disease_symptoms.get(predicted_disease, []))
|
110 |
+
missing = expected - self.reported_symptoms
|
111 |
+
not_asked = missing - self.asked_missing
|
112 |
+
if not_asked:
|
113 |
+
symptom_to_ask = list(not_asked)[0]
|
114 |
+
followup = f"Are you also experiencing {symptom_to_ask}?"
|
115 |
+
self.conversation_history.append("Doctor: " + followup)
|
116 |
+
self.awaiting_followup = symptom_to_ask
|
117 |
+
return followup
|
118 |
+
prompt = "Doctor: Do you have any other symptoms you'd like to mention?"
|
119 |
+
self.conversation_history.append(prompt)
|
120 |
+
return prompt
|
121 |
+
|
122 |
+
# State: asking about pain
|
123 |
+
elif self.state == "pain":
|
124 |
+
try:
|
125 |
+
self.pain_level = int(message)
|
126 |
+
except ValueError:
|
127 |
+
self.pain_level = message
|
128 |
+
self.state = "medications"
|
129 |
+
prompt = "Doctor: Have you taken any medications recently? If yes, please specify (or type 'no' if none):"
|
130 |
+
self.conversation_history.append(prompt)
|
131 |
+
return prompt
|
132 |
+
|
133 |
+
# State: asking about medications
|
134 |
+
elif self.state == "medications":
|
135 |
+
self.medications = message if message.lower() not in ["no", "none"] else "None"
|
136 |
+
closing = "Doctor: Thank you for providing all the information."
|
137 |
+
self.conversation_history.append(closing)
|
138 |
+
self.finished = True
|
139 |
+
return closing
|
140 |
+
|
141 |
+
return "Doctor: I'm sorry, I didn't understand that."
|
142 |
+
|
143 |
+
def get_data(self):
|
144 |
+
return {
|
145 |
+
"conversation": self.conversation_history,
|
146 |
+
"symptoms": list(self.reported_symptoms),
|
147 |
+
"pain_level": getattr(self, "pain_level", None),
|
148 |
+
"medications": getattr(self, "medications", None)
|
149 |
+
}
|
app/database.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pymongo import MongoClient
|
3 |
+
|
4 |
+
# Replace with your actual username and password
|
5 |
+
MONGO_URI = "mongodb+srv://root:[email protected]/uspark_db?retryWrites=true&w=majority"
|
6 |
+
|
7 |
+
client = MongoClient(MONGO_URI)
|
8 |
+
db = client["uspark_db"]
|
9 |
+
|
10 |
+
def save_chat_session(session_id: str, conversation_data: dict):
|
11 |
+
db.chatbot.insert_one({"session_id": session_id, **conversation_data})
|
12 |
+
|
13 |
+
def save_medseg_result(result_data: dict):
|
14 |
+
db.medseg.insert_one(result_data)
|
app/main.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, Depends
|
2 |
+
from uuid import uuid4
|
3 |
+
import io
|
4 |
+
from PIL import Image
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
# Import modules from the Uspark package
|
8 |
+
from app.chatbot import ChatbotSession
|
9 |
+
from app.mediseg import complete_pipeline_image
|
10 |
+
from app.database import save_chat_session, save_medseg_result
|
11 |
+
|
12 |
+
app = FastAPI(title="Uspark API")
|
13 |
+
|
14 |
+
# Ensure models are loaded from the 'models' directory within 'Uspark'
|
15 |
+
import sys
|
16 |
+
import os
|
17 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), "../models"))
|
18 |
+
|
19 |
+
class ChatMessage(BaseModel):
|
20 |
+
session_id: str
|
21 |
+
message: str
|
22 |
+
|
23 |
+
# In-memory session store (for demo purposes; consider persistent storage for production)
|
24 |
+
sessions = {}
|
25 |
+
|
26 |
+
@app.post("/chat/start")
|
27 |
+
def start_chat():
|
28 |
+
session_id = str(uuid4())
|
29 |
+
session = ChatbotSession()
|
30 |
+
sessions[session_id] = session
|
31 |
+
return {"session_id": session_id, "message": session.conversation_history[0]}
|
32 |
+
|
33 |
+
@app.post("/chat/message")
|
34 |
+
def chat_message(chat: ChatMessage):
|
35 |
+
if chat.session_id not in sessions:
|
36 |
+
raise HTTPException(status_code=404, detail="Invalid session_id")
|
37 |
+
|
38 |
+
session = sessions[chat.session_id]
|
39 |
+
response = session.process_message(chat.message)
|
40 |
+
|
41 |
+
# If the session has finished (after pain & medication), save to MongoDB and remove from memory.
|
42 |
+
if session.finished:
|
43 |
+
save_chat_session(chat.session_id, session.get_data())
|
44 |
+
del sessions[chat.session_id]
|
45 |
+
|
46 |
+
return {"response": response, "conversation": session.conversation_history}
|
47 |
+
|
48 |
+
@app.post("/medseg")
|
49 |
+
async def medseg_endpoint(file: UploadFile = File(...)):
|
50 |
+
try:
|
51 |
+
contents = await file.read()
|
52 |
+
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
53 |
+
except Exception:
|
54 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
55 |
+
|
56 |
+
# Process image through the complete pipeline (classification + segmentation)
|
57 |
+
result = complete_pipeline_image(image)
|
58 |
+
|
59 |
+
# Save result to MongoDB
|
60 |
+
result_record = {
|
61 |
+
"filename": file.filename,
|
62 |
+
"result": result # Contains predicted modality and base64 image(s)
|
63 |
+
}
|
64 |
+
save_medseg_result(result_record)
|
65 |
+
|
66 |
+
return result
|
app/mediseg.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import nibabel as nib
|
5 |
+
import pydicom
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchvision.models as models
|
12 |
+
from torchvision import transforms
|
13 |
+
from monai.transforms import EnsureChannelFirst, ScaleIntensity, Resize, ToTensor
|
14 |
+
from io import BytesIO
|
15 |
+
import base64
|
16 |
+
|
17 |
+
# Set device
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# -------------------------------
|
21 |
+
# CLASSIFIER MODULE (Medical Classifier)
|
22 |
+
# -------------------------------
|
23 |
+
class_names = ['AbdomenCT', 'BreastMRI', 'Chest Xray', 'ChestCT',
|
24 |
+
'Endoscopy', 'Hand Xray', 'HeadCT', 'HeadMRI']
|
25 |
+
|
26 |
+
# Update model path to load from models folder
|
27 |
+
model_path_classifier = os.path.join("models", "best_metric_model (4).pth")
|
28 |
+
|
29 |
+
from monai.networks.nets import DenseNet121
|
30 |
+
classifier_model = DenseNet121(
|
31 |
+
spatial_dims=2,
|
32 |
+
in_channels=3,
|
33 |
+
out_channels=len(class_names)
|
34 |
+
).to(device)
|
35 |
+
|
36 |
+
state_dict = torch.load(model_path_classifier, map_location=device)
|
37 |
+
classifier_model.load_state_dict(state_dict, strict=False)
|
38 |
+
classifier_model.eval()
|
39 |
+
|
40 |
+
# A simple transform for classification from a PIL image
|
41 |
+
def classify_medical_image_pil(image: Image.Image) -> str:
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.ToTensor(),
|
44 |
+
transforms.Resize((224, 224))
|
45 |
+
])
|
46 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
47 |
+
with torch.no_grad():
|
48 |
+
output = classifier_model(image_tensor)
|
49 |
+
pred_class = torch.argmax(output, dim=1).item()
|
50 |
+
return class_names[pred_class]
|
51 |
+
|
52 |
+
# -------------------------------
|
53 |
+
# SPECIALIZED MODULES
|
54 |
+
# -------------------------------
|
55 |
+
|
56 |
+
# --- A. Brain Tumor Segmentation Module (for HeadCT/HeadMRI) ---
|
57 |
+
class DoubleConvUNet(nn.Module):
|
58 |
+
def __init__(self, in_channels, out_channels):
|
59 |
+
super(DoubleConvUNet, self).__init__()
|
60 |
+
self.conv = nn.Sequential(
|
61 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
62 |
+
nn.BatchNorm2d(out_channels),
|
63 |
+
nn.ReLU(inplace=True),
|
64 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
65 |
+
nn.BatchNorm2d(out_channels),
|
66 |
+
nn.ReLU(inplace=True)
|
67 |
+
)
|
68 |
+
def forward(self, x):
|
69 |
+
return self.conv(x)
|
70 |
+
|
71 |
+
class UNetMulti(nn.Module):
|
72 |
+
def __init__(self, in_channels=3, out_channels=4):
|
73 |
+
super(UNetMulti, self).__init__()
|
74 |
+
self.down1 = DoubleConvUNet(in_channels, 64)
|
75 |
+
self.pool1 = nn.MaxPool2d(2)
|
76 |
+
self.down2 = DoubleConvUNet(64, 128)
|
77 |
+
self.pool2 = nn.MaxPool2d(2)
|
78 |
+
self.down3 = DoubleConvUNet(128, 256)
|
79 |
+
self.pool3 = nn.MaxPool2d(2)
|
80 |
+
self.down4 = DoubleConvUNet(256, 512)
|
81 |
+
self.pool4 = nn.MaxPool2d(2)
|
82 |
+
self.bottleneck = DoubleConvUNet(512, 1024)
|
83 |
+
self.up4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
84 |
+
self.conv4 = DoubleConvUNet(1024, 512)
|
85 |
+
self.up3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
|
86 |
+
self.conv3 = DoubleConvUNet(512, 256)
|
87 |
+
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
88 |
+
self.conv2 = DoubleConvUNet(256, 128)
|
89 |
+
self.up1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
90 |
+
self.conv1 = DoubleConvUNet(128, 64)
|
91 |
+
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1)
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
c1 = self.down1(x)
|
95 |
+
p1 = self.pool1(c1)
|
96 |
+
c2 = self.down2(p1)
|
97 |
+
p2 = self.pool2(c2)
|
98 |
+
c3 = self.down3(p2)
|
99 |
+
p3 = self.pool3(c3)
|
100 |
+
c4 = self.down4(p3)
|
101 |
+
p4 = self.pool4(c4)
|
102 |
+
bn = self.bottleneck(p4)
|
103 |
+
u4 = self.up4(bn)
|
104 |
+
merge4 = torch.cat([u4, c4], dim=1)
|
105 |
+
c5 = self.conv4(merge4)
|
106 |
+
u3 = self.up3(c5)
|
107 |
+
merge3 = torch.cat([u3, c3], dim=1)
|
108 |
+
c6 = self.conv3(merge3)
|
109 |
+
u2 = self.up2(c6)
|
110 |
+
merge2 = torch.cat([u2, c2], dim=1)
|
111 |
+
c7 = self.conv2(merge2)
|
112 |
+
u1 = self.up1(c7)
|
113 |
+
merge1 = torch.cat([u1, c1], dim=1)
|
114 |
+
c8 = self.conv1(merge1)
|
115 |
+
output = self.final_conv(c8)
|
116 |
+
return output
|
117 |
+
|
118 |
+
def process_brain_tumor(image: Image.Image, model_path=os.path.join("models", "brain_tumor_unet_multiclass.pth")) -> str:
|
119 |
+
model = UNetMulti(in_channels=3, out_channels=4).to(device)
|
120 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
121 |
+
model.eval()
|
122 |
+
|
123 |
+
transform_img = transforms.Compose([
|
124 |
+
transforms.Resize((256,256)),
|
125 |
+
transforms.ToTensor()
|
126 |
+
])
|
127 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
128 |
+
with torch.no_grad():
|
129 |
+
output = model(input_tensor)
|
130 |
+
preds = torch.argmax(output, dim=1).squeeze().cpu().numpy()
|
131 |
+
|
132 |
+
image_np = np.array(image.resize((256,256)))
|
133 |
+
# Create overlay and blended image
|
134 |
+
overlay = cv2.applyColorMap(np.uint8(255 * preds/np.max(preds + 1e-8)), cv2.COLORMAP_JET)
|
135 |
+
overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
|
136 |
+
blended = cv2.addWeighted(np.uint8(image_np), 0.6, overlay, 0.4, 0)
|
137 |
+
|
138 |
+
# Create a figure with subplots
|
139 |
+
fig, ax = plt.subplots(1, 3, figsize=(18,6))
|
140 |
+
ax[0].imshow(image_np)
|
141 |
+
ax[0].set_title("Original Image")
|
142 |
+
ax[0].axis("off")
|
143 |
+
ax[1].imshow(preds, cmap='jet')
|
144 |
+
ax[1].set_title("Segmentation Mask")
|
145 |
+
ax[1].axis("off")
|
146 |
+
ax[2].imshow(blended)
|
147 |
+
ax[2].set_title("Overlay")
|
148 |
+
ax[2].axis("off")
|
149 |
+
|
150 |
+
buf = BytesIO()
|
151 |
+
fig.savefig(buf, format="png")
|
152 |
+
buf.seek(0)
|
153 |
+
img_base64 = base64.b64encode(buf.read()).decode("utf-8")
|
154 |
+
plt.close(fig)
|
155 |
+
return img_base64
|
156 |
+
|
157 |
+
# --- B. Endoscopy Polyp Detection Module (Binary UNet) ---
|
158 |
+
class UNetBinary(nn.Module):
|
159 |
+
def __init__(self, in_channels=3, out_channels=1):
|
160 |
+
super(UNetBinary, self).__init__()
|
161 |
+
self.down1 = DoubleConvUNet(in_channels, 64)
|
162 |
+
self.pool1 = nn.MaxPool2d(2)
|
163 |
+
self.down2 = DoubleConvUNet(64, 128)
|
164 |
+
self.pool2 = nn.MaxPool2d(2)
|
165 |
+
self.down3 = DoubleConvUNet(128, 256)
|
166 |
+
self.pool3 = nn.MaxPool2d(2)
|
167 |
+
self.down4 = DoubleConvUNet(128, 512)
|
168 |
+
self.pool4 = nn.MaxPool2d(2)
|
169 |
+
self.bottleneck = DoubleConvUNet(512, 1024)
|
170 |
+
self.up4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
171 |
+
self.conv4 = DoubleConvUNet(1024, 512)
|
172 |
+
self.up3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
|
173 |
+
self.conv3 = DoubleConvUNet(512, 256)
|
174 |
+
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
175 |
+
self.conv2 = DoubleConvUNet(256, 128)
|
176 |
+
self.up1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
177 |
+
self.conv1 = DoubleConvUNet(128, 64)
|
178 |
+
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
c1 = self.down1(x)
|
182 |
+
p1 = self.pool1(c1)
|
183 |
+
c2 = self.down2(p1)
|
184 |
+
p2 = self.pool2(c2)
|
185 |
+
c3 = self.down3(p2)
|
186 |
+
p3 = self.pool3(c3)
|
187 |
+
c4 = self.down4(p3)
|
188 |
+
p4 = self.pool4(c4)
|
189 |
+
bn = self.bottleneck(p4)
|
190 |
+
u4 = self.up4(bn)
|
191 |
+
merge4 = torch.cat([u4, c4], dim=1)
|
192 |
+
c5 = self.conv4(merge4)
|
193 |
+
u3 = self.up3(c5)
|
194 |
+
merge3 = torch.cat([u3, c3], dim=1)
|
195 |
+
c6 = self.conv3(merge3)
|
196 |
+
u2 = self.up2(c6)
|
197 |
+
merge2 = torch.cat([u2, c2], dim=1)
|
198 |
+
c7 = self.conv2(merge2)
|
199 |
+
u1 = self.up1(c7)
|
200 |
+
merge1 = torch.cat([u1, c1], dim=1)
|
201 |
+
c8 = self.conv1(merge1)
|
202 |
+
output = self.final_conv(c8)
|
203 |
+
return output
|
204 |
+
|
205 |
+
def process_endoscopy(image: Image.Image, model_path=os.path.join("models", "endoscopy_unet.pth")) -> str:
|
206 |
+
model = UNetBinary(in_channels=3, out_channels=1).to(device)
|
207 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
208 |
+
model.eval()
|
209 |
+
|
210 |
+
transform_img = transforms.Compose([
|
211 |
+
transforms.Resize((256,256)),
|
212 |
+
transforms.ToTensor()
|
213 |
+
])
|
214 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
215 |
+
with torch.no_grad():
|
216 |
+
output = model(input_tensor)
|
217 |
+
prob = torch.sigmoid(output)
|
218 |
+
mask = (prob > 0.5).float().squeeze().cpu().numpy()
|
219 |
+
|
220 |
+
image_np = np.array(image.resize((256,256)))
|
221 |
+
overlay = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
|
222 |
+
overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
|
223 |
+
blended = cv2.addWeighted(np.uint8(image_np), 0.6, overlay, 0.4, 0)
|
224 |
+
|
225 |
+
fig, ax = plt.subplots(1, 3, figsize=(18,6))
|
226 |
+
ax[0].imshow(image_np)
|
227 |
+
ax[0].set_title("Actual Image")
|
228 |
+
ax[0].axis("off")
|
229 |
+
ax[1].imshow(mask, cmap='gray')
|
230 |
+
ax[1].set_title("Segmentation Mask")
|
231 |
+
ax[1].axis("off")
|
232 |
+
ax[2].imshow(blended)
|
233 |
+
ax[2].set_title("Overlay")
|
234 |
+
ax[2].axis("off")
|
235 |
+
|
236 |
+
buf = BytesIO()
|
237 |
+
fig.savefig(buf, format="png")
|
238 |
+
buf.seek(0)
|
239 |
+
img_base64 = base64.b64encode(buf.read()).decode("utf-8")
|
240 |
+
plt.close(fig)
|
241 |
+
return img_base64
|
242 |
+
|
243 |
+
# --- C. Pneumonia Detection Module (Using Grad-CAM on ResNet18) ---
|
244 |
+
class GradCAM_Pneumonia:
|
245 |
+
def __init__(self, model, target_layer):
|
246 |
+
self.model = model
|
247 |
+
self.target_layer = target_layer
|
248 |
+
self.gradients = None
|
249 |
+
self.activations = None
|
250 |
+
self.hook_handles = []
|
251 |
+
self._register_hooks()
|
252 |
+
|
253 |
+
def _register_hooks(self):
|
254 |
+
def forward_hook(module, input, output):
|
255 |
+
self.activations = output.detach()
|
256 |
+
def backward_hook(module, grad_in, grad_out):
|
257 |
+
self.gradients = grad_out[0].detach()
|
258 |
+
handle1 = self.target_layer.register_forward_hook(forward_hook)
|
259 |
+
handle2 = self.target_layer.register_backward_hook(backward_hook)
|
260 |
+
self.hook_handles.extend([handle1, handle2])
|
261 |
+
|
262 |
+
def remove_hooks(self):
|
263 |
+
for handle in self.hook_handles:
|
264 |
+
handle.remove()
|
265 |
+
|
266 |
+
def generate(self, input_image, target_class=None):
|
267 |
+
output = self.model(input_image)
|
268 |
+
if target_class is None:
|
269 |
+
target_class = output.argmax(dim=1).item()
|
270 |
+
self.model.zero_grad()
|
271 |
+
one_hot = torch.zeros_like(output)
|
272 |
+
one_hot[0, target_class] = 1
|
273 |
+
output.backward(gradient=one_hot, retain_graph=True)
|
274 |
+
weights = self.gradients.mean(dim=(2,3), keepdim=True)
|
275 |
+
cam = (weights * self.activations).sum(dim=1, keepdim=True)
|
276 |
+
cam = F.relu(cam)
|
277 |
+
cam = cam.squeeze().cpu().numpy()
|
278 |
+
_, _, H, W = input_image.shape
|
279 |
+
cam = cv2.resize(cam, (W, H))
|
280 |
+
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam) + 1e-8)
|
281 |
+
return cam, output
|
282 |
+
|
283 |
+
def process_pneumonia(image: Image.Image, model_path=os.path.join("models", "pneumonia_resnet18.pth")) -> str:
|
284 |
+
model = models.resnet18(pretrained=False)
|
285 |
+
num_ftrs = model.fc.in_features
|
286 |
+
model.fc = nn.Linear(num_ftrs, 2) # 2 classes: normal and pneumonia
|
287 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
288 |
+
model.to(device)
|
289 |
+
model.eval()
|
290 |
+
|
291 |
+
grad_cam = GradCAM_Pneumonia(model, model.layer4)
|
292 |
+
|
293 |
+
transform_img = transforms.Compose([
|
294 |
+
transforms.Resize((224,224)),
|
295 |
+
transforms.ToTensor(),
|
296 |
+
transforms.Normalize(mean=[0.485,0.456,0.406],
|
297 |
+
std=[0.229,0.224,0.225])
|
298 |
+
])
|
299 |
+
input_tensor = transform_img(image).unsqueeze(0).to(device)
|
300 |
+
with torch.no_grad():
|
301 |
+
cam, output = grad_cam.generate(input_tensor)
|
302 |
+
predicted_class = output.argmax(dim=1).item()
|
303 |
+
label_text = "Pneumonia" if predicted_class == 1 else "Normal"
|
304 |
+
|
305 |
+
def get_bounding_box(heatmap, thresh=0.5, min_area=100):
|
306 |
+
heat_uint8 = np.uint8(255 * heatmap)
|
307 |
+
ret, binary = cv2.threshold(heat_uint8, int(thresh*255), 255, cv2.THRESH_BINARY)
|
308 |
+
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
309 |
+
if len(contours)==0:
|
310 |
+
return None
|
311 |
+
largest = max(contours, key=cv2.contourArea)
|
312 |
+
if cv2.contourArea(largest) < min_area:
|
313 |
+
return None
|
314 |
+
x, y, w, h = cv2.boundingRect(largest)
|
315 |
+
return (x, y, w, h)
|
316 |
+
|
317 |
+
bbox = None
|
318 |
+
if predicted_class == 1:
|
319 |
+
bbox = get_bounding_box(cam, thresh=0.5, min_area=100)
|
320 |
+
|
321 |
+
resized_image = image.resize((224,224))
|
322 |
+
image_np = np.array(resized_image)
|
323 |
+
overlay = image_np.copy()
|
324 |
+
if bbox is not None:
|
325 |
+
x, y, w, h = bbox
|
326 |
+
cv2.rectangle(overlay, (x, y), (x+w, y+h), (255,0,0), 2)
|
327 |
+
cv2.putText(overlay, label_text, (10,25), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,0),2)
|
328 |
+
|
329 |
+
heatmap_color = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP_JET)
|
330 |
+
heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
|
331 |
+
|
332 |
+
fig, ax = plt.subplots(1, 3, figsize=(18,6))
|
333 |
+
ax[0].imshow(image_np)
|
334 |
+
ax[0].set_title("Actual Image")
|
335 |
+
ax[0].axis("off")
|
336 |
+
ax[1].imshow(heatmap_color)
|
337 |
+
ax[1].set_title("Detected Output (Heatmap)")
|
338 |
+
ax[1].axis("off")
|
339 |
+
ax[2].imshow(overlay)
|
340 |
+
ax[2].set_title("Boxed Overlay")
|
341 |
+
ax[2].axis("off")
|
342 |
+
|
343 |
+
buf = BytesIO()
|
344 |
+
fig.savefig(buf, format="png")
|
345 |
+
buf.seek(0)
|
346 |
+
img_base64 = base64.b64encode(buf.read()).decode("utf-8")
|
347 |
+
plt.close(fig)
|
348 |
+
grad_cam.remove_hooks()
|
349 |
+
return img_base64
|
350 |
+
|
351 |
+
# -------------------------------
|
352 |
+
# COMPLETE PIPELINE FUNCTION
|
353 |
+
# -------------------------------
|
354 |
+
def complete_pipeline_image(image: Image.Image) -> dict:
|
355 |
+
predicted_modality = classify_medical_image_pil(image)
|
356 |
+
result = {"predicted_modality": predicted_modality}
|
357 |
+
|
358 |
+
if predicted_modality in ["HeadCT", "HeadMRI"]:
|
359 |
+
result_overlay = process_brain_tumor(image)
|
360 |
+
result["segmentation_result"] = result_overlay
|
361 |
+
elif predicted_modality == "Endoscopy":
|
362 |
+
result_overlay = process_endoscopy(image)
|
363 |
+
result["segmentation_result"] = result_overlay
|
364 |
+
elif predicted_modality == "Chest Xray":
|
365 |
+
result_overlay = process_pneumonia(image)
|
366 |
+
result["segmentation_result"] = result_overlay
|
367 |
+
else:
|
368 |
+
# For modalities without specialized processing, return the original image as base64
|
369 |
+
buf = BytesIO()
|
370 |
+
image.save(buf, format="PNG")
|
371 |
+
result["segmentation_result"] = base64.b64encode(buf.getvalue()).decode("utf-8")
|
372 |
+
return result
|
disease_sympts_prec_full.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
images.jpg
ADDED
![]() |
models/best_metric_model (4).pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a5e578d9e93b089eed0bdbdaa50237209fce830497136593664b16d4df720ee
|
3 |
+
size 28471314
|
models/brain_tumor_unet_multiclass.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b11bc3ebaa317154e9530f8151ce6bf7efa407abeedc62454502099889dbfe42
|
3 |
+
size 124269778
|
models/endoscopy_unet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac633092591e1c515da87ed7bd54de35ca4c50fec41a646b8cfef5b1e15afde
|
3 |
+
size 124267126
|
models/pneumonia_resnet18.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a9bca18323c658623f0e62207e6c3331836ad1825a8f9c9d3aa118709d2614a
|
3 |
+
size 44790376
|
oligodendroglioma-banner.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
pymongo
|
4 |
+
pandas
|
5 |
+
faiss-cpu
|
6 |
+
numpy
|
7 |
+
scikit-learn
|
8 |
+
transformers
|
9 |
+
torch
|
10 |
+
torchvision
|
11 |
+
monai
|
12 |
+
pydicom
|
13 |
+
nibabel
|
14 |
+
opencv-python
|
15 |
+
Pillow
|
16 |
+
matplotlib
|
symptom_assessment.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
2 |
+
|
3 |
+
class SymptomAssessment:
|
4 |
+
def __init__(self):
|
5 |
+
# Example disease-symptom mapping dictionary.
|
6 |
+
# In practice, replace this with a robust dataset.
|
7 |
+
self.disease_symptoms = {
|
8 |
+
"Flu": ["fever", "cough", "sore throat", "fatigue"],
|
9 |
+
"Migraine": ["headache", "nausea", "sensitivity to light"],
|
10 |
+
"COVID-19": ["fever", "cough", "shortness of breath", "loss of taste"]
|
11 |
+
}
|
12 |
+
# Prepare vector space for diseases
|
13 |
+
self.vectorizer = TfidfVectorizer()
|
14 |
+
self.diseases = list(self.disease_symptoms.keys())
|
15 |
+
symptom_texts = [" ".join(self.disease_symptoms[d]) for d in self.diseases]
|
16 |
+
self.vectors = self.vectorizer.fit_transform(symptom_texts)
|
17 |
+
|
18 |
+
def assess(self, symptoms_list):
|
19 |
+
"""
|
20 |
+
Given a list of reported symptoms, determine the best matching disease
|
21 |
+
and identify which expected symptoms are missing.
|
22 |
+
"""
|
23 |
+
input_text = " ".join(symptoms_list)
|
24 |
+
input_vector = self.vectorizer.transform([input_text])
|
25 |
+
similarities = (self.vectors * input_vector.T).toarray().flatten()
|
26 |
+
best_match_index = similarities.argmax()
|
27 |
+
best_disease = self.diseases[best_match_index]
|
28 |
+
missing_symptoms = list(set(self.disease_symptoms[best_disease]) - set(symptoms_list))
|
29 |
+
assessment = (f"Based on the input symptoms, {best_disease} is suspected. "
|
30 |
+
f"Missing symptoms for improved diagnosis: {missing_symptoms}")
|
31 |
+
return missing_symptoms, assessment
|
templates/index.html
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<meta charset="utf-8">
|
5 |
+
<title>Medical Image Processing Pipeline</title>
|
6 |
+
<style>
|
7 |
+
body { font-family: Arial, sans-serif; margin: 20px; }
|
8 |
+
.container { max-width: 800px; margin: auto; }
|
9 |
+
.result img { max-width: 250px; margin: 10px; }
|
10 |
+
.result { display: flex; flex-wrap: wrap; }
|
11 |
+
</style>
|
12 |
+
</head>
|
13 |
+
<body>
|
14 |
+
<div class="container">
|
15 |
+
<h1>Medical Image Processing Pipeline</h1>
|
16 |
+
<form action="/predict" method="POST" enctype="multipart/form-data">
|
17 |
+
<input type="file" name="file" accept="image/*,.nii,.nii.gz,.dcm" required>
|
18 |
+
<button type="submit">Upload and Process</button>
|
19 |
+
</form>
|
20 |
+
{% if result %}
|
21 |
+
<hr>
|
22 |
+
{% if result.error %}
|
23 |
+
<h3>Error: {{ result.error }}</h3>
|
24 |
+
{% else %}
|
25 |
+
<h3>Predicted Modality: {{ result.predicted_modality }}</h3>
|
26 |
+
{% if result.specialized %}
|
27 |
+
<div class="result">
|
28 |
+
<div>
|
29 |
+
<h4>Original Image</h4>
|
30 |
+
<img src="data:image/jpeg;base64,{{ result.specialized.original }}" alt="Original">
|
31 |
+
</div>
|
32 |
+
<div>
|
33 |
+
<h4>Mask</h4>
|
34 |
+
<img src="data:image/jpeg;base64,{{ result.specialized.mask }}" alt="Mask">
|
35 |
+
</div>
|
36 |
+
<div>
|
37 |
+
<h4>Overlay</h4>
|
38 |
+
<img src="data:image/jpeg;base64,{{ result.specialized.overlay }}" alt="Overlay">
|
39 |
+
</div>
|
40 |
+
</div>
|
41 |
+
{% elif result.message %}
|
42 |
+
<h4>{{ result.message }}</h4>
|
43 |
+
<div class="result">
|
44 |
+
<img src="data:image/jpeg;base64,{{ result.original }}" alt="Original">
|
45 |
+
</div>
|
46 |
+
{% endif %}
|
47 |
+
{% endif %}
|
48 |
+
{% endif %}
|
49 |
+
</div>
|
50 |
+
</body>
|
51 |
+
</html>
|