Spaces:
Sleeping
Sleeping
Pranjal12345
commited on
Commit
•
174a3fe
1
Parent(s):
5a4d77d
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
from utils import lang_ids
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
lang_list = list(lang_ids.keys())
|
10 |
|
@@ -12,25 +22,23 @@ def translate_audio(inputs,target_language):
|
|
12 |
if inputs is None:
|
13 |
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.")
|
14 |
|
15 |
-
|
16 |
|
17 |
target_lang = lang_ids[target_language]
|
18 |
|
19 |
if target_language == 'English':
|
20 |
-
|
21 |
-
for segment in segments:
|
22 |
-
lst = lst + segment.text
|
23 |
-
return lst
|
24 |
|
25 |
else:
|
26 |
model = MBartForConditionalGeneration.from_pretrained("sanjitaa/mbart-many-to-many")
|
27 |
tokenizer = MBart50TokenizerFast.from_pretrained("sanjitaa/mbart-many-to-many")
|
28 |
|
29 |
tokenizer.src_lang = "en_XX"
|
|
|
30 |
translated_text = ''
|
31 |
|
32 |
-
for segment in
|
33 |
-
encoded_chunk = tokenizer(segment
|
34 |
generated_tokens = model.generate(
|
35 |
|
36 |
**encoded_chunk,
|
@@ -40,20 +48,19 @@ def translate_audio(inputs,target_language):
|
|
40 |
translated_text = translated_text + translated_chunk[0]
|
41 |
return translated_text
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
translation_interface = gr.Interface(
|
44 |
fn=translate_audio,
|
45 |
-
inputs=
|
46 |
-
gr.inputs.Audio(source="upload", type="filepath", label="Audio file"),
|
47 |
-
gr.Dropdown(lang_list, value="English", label="Target Language"),
|
48 |
-
],
|
49 |
outputs="text",
|
50 |
-
|
51 |
-
|
52 |
-
title="Translate Audio to English",
|
53 |
-
description=(
|
54 |
-
"Translate audio inputs to English using the"
|
55 |
-
),
|
56 |
-
allow_flagging="never",
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
from utils import lang_ids
|
5 |
+
import nltk
|
6 |
+
nltk.download('punkt')
|
7 |
|
8 |
+
MODEL_NAME = "openai/whisper-medium"
|
9 |
+
BATCH_SIZE = 8
|
10 |
+
FILE_LIMIT_MB = 1000
|
11 |
+
|
12 |
+
pipe = pipeline(
|
13 |
+
task="automatic-speech-recognition",
|
14 |
+
model=MODEL_NAME,
|
15 |
+
chunk_length_s=30,
|
16 |
+
device='cpu',
|
17 |
+
)
|
18 |
|
19 |
lang_list = list(lang_ids.keys())
|
20 |
|
|
|
22 |
if inputs is None:
|
23 |
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.")
|
24 |
|
25 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "translate"}, return_timestamps=True)["text"]
|
26 |
|
27 |
target_lang = lang_ids[target_language]
|
28 |
|
29 |
if target_language == 'English':
|
30 |
+
return text
|
|
|
|
|
|
|
31 |
|
32 |
else:
|
33 |
model = MBartForConditionalGeneration.from_pretrained("sanjitaa/mbart-many-to-many")
|
34 |
tokenizer = MBart50TokenizerFast.from_pretrained("sanjitaa/mbart-many-to-many")
|
35 |
|
36 |
tokenizer.src_lang = "en_XX"
|
37 |
+
chunks = nltk.tokenize.sent_tokenize(text)
|
38 |
translated_text = ''
|
39 |
|
40 |
+
for segment in chunks:
|
41 |
+
encoded_chunk = tokenizer(segment, return_tensors="pt")
|
42 |
generated_tokens = model.generate(
|
43 |
|
44 |
**encoded_chunk,
|
|
|
48 |
translated_text = translated_text + translated_chunk[0]
|
49 |
return translated_text
|
50 |
|
51 |
+
inputs=[
|
52 |
+
gr.inputs.Audio(source="upload", type="filepath", label="Audio file"),
|
53 |
+
gr.Dropdown(lang_list, value="English", label="Target Language"),
|
54 |
+
]
|
55 |
+
description = "Audio translation"
|
56 |
+
|
57 |
+
|
58 |
translation_interface = gr.Interface(
|
59 |
fn=translate_audio,
|
60 |
+
inputs= inputs,
|
|
|
|
|
|
|
61 |
outputs="text",
|
62 |
+
title="Speech Translation",
|
63 |
+
description= description
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|