Spaces:
Sleeping
Sleeping
File size: 11,288 Bytes
4dfff5c 936cab0 4dfff5c dde4acb 4dfff5c 936cab0 4dfff5c 936cab0 4dfff5c dde4acb 4dfff5c dde4acb 4dfff5c dde4acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import pandas as pd
import os
import itertools
from constants import metric_dict, tags, columns
# Download from github and load the data
# TODO: Download every x hours
def download_data(url = "https://github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/leaderboard.jsonl", path = "leaderboard.jsonl"):
ret_code = os.system(f'wget {url} -O {path}_tmp')
if ret_code != 0:
return ret_code
os.system(f'mv {path}_tmp {path}')
return 0
def search_leaderboard(df, queries):
# Assuming DATA_OVERALL is the DataFrame containing the leaderboard data
# filtered_data = df[df["Method"].str.contains(query, case=False, na=False)]
temp_pds = []
for query in queries:
temp_pds.append(df[df["Method"].str.contains(query, case=False, na=False)])
return pd.concat(temp_pds).drop_duplicates()
def search_tags_leaderboard(df, tag_blocks, queries):
return search_leaderboard(filter_tags(df, tag_blocks), queries)
def filter_tags(df, tag_blocks):
def fuzzy_in(x, y_set):
return any(x in z for z in y_set)
all_tags_sets = [set(tag.lower() for tag in tag_block) for tag_block in tag_blocks]
filtered_rows = [i for i, tags in enumerate(complete_dt['tags']) if all('any' in tag_set or any(fuzzy_in(tag.lower(), tag_set) for tag in tags) for tag_set in all_tags_sets)]
return prepare_complete_dt(df.iloc[filtered_rows])
def prepare_complete_dt(complete_dt):
data = []
DATA_OVERALL = complete_dt.copy()
for Method in set(complete_dt['Method']):
data.append([])
data[-1].append(Method)
for metric in metric_dict:
metric_val = metric_dict[metric]
data[-1].append(complete_dt[complete_dt['Method'] == Method][metric_val].mean())
data[-1].append(complete_dt[complete_dt['Method'] == Method]['source'].iloc[0])
DATA_OVERALL = pd.DataFrame(data, columns=columns)
try:
DATA_OVERALL.sort_values(by=['WordPos Overall'], inplace=True, ascending=False)
except: ...
return DATA_OVERALL
def format_df_for_leaderboard(df):
# The source column needs to be embedded directly into the Method column using appropriate markdown.
df['Method'] = df[['source', 'Method']].apply(lambda x: f'<a target="_blank" style="text-decoration: underline; color: #3571d7;" href="{x[0]}">{x[1]}</a>', axis=1)
# Convert all float metrics to 1 decimal
df_copy = df.copy()
for metric in metric_dict:
df_copy[metric] = df_copy[metric].apply(lambda x: float(f'{(100*x):.1f}'))
# drop the source column
return df_copy.drop(columns=['source'])
ret_code = 0
# ret_code = download_data()
if ret_code != 0:
print("Leaderboard Download failed")
complete_dt = pd.read_json('leaderboard.jsonl', lines=True, orient='records')
DATA_OVERALL = prepare_complete_dt(complete_dt)
with gr.Blocks() as demo:
demo_content = """
<style>
.badge-container {
text-align: center;
display: flex;
justify-content: center;
}
.badge {
margin: 1px;
}
</style>
<h1 style="text-align: center;">GEO-Bench Leaderboard</h1>
<div class="badge-container">
<a href="https://pranjal2041.github.io/GEO/" class="badge">
<img src="https://img.shields.io/website?down_message=down&style=for-the-badge&up_message=up&url=https%3A%2F%2Fpranjal2041.github.io/GEO/" alt="Website">
</a>
<a href="https://arxiv.org/abs/2311.09735" class="badge">
<img src="https://img.shields.io/badge/arXiv-2311.09735-red.svg?style=for-the-badge" alt="Arxiv Paper">
</a>
<a href="https://huggingface.co/datasets/GEO-optim/geo-bench" class="badge">
<img src="https://img.shields.io/badge/Dataset-GEO-%2DBENCH-orange?style=for-the-badge" alt="Dataset">
</a>
<a href="https://github.com/Pranjal2041/GEO" class="badge">
<img src="https://img.shields.io/badge/Github-Code-green?style=for-the-badge" alt="Code">
</a>
</div>
<p>
- For benchmarking content optimization Methods for Generative Engines.<br>
- GEO-Bench evaluates Methods for optimizing website content to improve visibility in generative engine responses. Benchmark contains 10K queries across 9 datasets covering diverse domains and intents.<br>
- Refer to GEO paper for more <a href="https://arxiv.org/abs/2311.09735">details</a>
</p>
"""
gr.HTML(demo_content)
with gr.Tabs():
with gr.TabItem('Overall π'):
with gr.Row():
gr.Markdown('## Overall Leaderboard')
with gr.Row():
data_overall = gr.components.Dataframe(
format_df_for_leaderboard(DATA_OVERALL),
datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
type="pandas",
wrap=True,
interactive=False,
)
# data_overall.
with gr.Row():
# search_bar = gr.Textbox(type="text", label="Search for a Method:")
search_bar = gr.Textbox(
placeholder=" π Search for your Method (separate multiple queries with `,`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
def search_button_click(query):
filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
return format_df_for_leaderboard(filtered_data)
with gr.TabItem('Tag-Wise Results π'):
with gr.Row():
gr.Markdown(f"""
## Tag-Wise Results
- The following table shows the results for each tag.
- The tags are sorted in the order of their performance.
- The table is sorted in the order of the overall score.
""")
with gr.Row():
search_bar_tag = gr.Textbox(
placeholder=" π Search for your Method (separate multiple queries with `,`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
def search_button_click(query):
filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
return format_df_for_leaderboard(filtered_data)
with gr.Row():
boxes = dict()
with gr.Column(min_width=320):
for tag in list(tags.keys())[:3]:
with gr.Box(elem_id="box-filter"):
boxes[tag] = gr.CheckboxGroup(
label=tag,
choices=tags[tag],
value=tags[tag],
interactive=True,
elem_id=f"filter-{tag}",
)
with gr.Column(min_width=320):
for tag in list(tags.keys())[4:]:
with gr.Box(elem_id="box-filter"):
boxes[tag] = gr.CheckboxGroup(
label=tag,
choices=tags[tag],
value=tags[tag],
interactive=True,
elem_id=f"filter-{tag}",
)
with gr.Row():
tag = list(tags.keys())[3]
with gr.Box(elem_id="box-filter"):
boxes[tag] = gr.CheckboxGroup(
label=tag,
choices=tags[tag],
value=tags[tag],
interactive=True,
elem_id=f"filter-{tag}",
)
with gr.Row():
data_tag_wise = gr.components.Dataframe(
format_df_for_leaderboard(DATA_OVERALL),
datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
type="pandas",
wrap=True,
interactive=False,
)
def filter_tag_click(*boxes):
return format_df_for_leaderboard(filter_tags(complete_dt, list(boxes)))
def search_tag_click(query, *boxes):
return format_df_for_leaderboard(search_tags_leaderboard(complete_dt, list(boxes), [x.strip() for x in query.split(',')]))
for box in boxes:
boxes[box].change(fn=filter_tag_click, inputs=list(boxes.values()), outputs=data_tag_wise)
search_bar_tag.submit(fn=search_tag_click, inputs=[search_bar_tag] + list(boxes.values()), outputs=data_tag_wise)
with gr.TabItem('About GEO-bench π'):
with gr.Row():
gr.Markdown(f"""
## About GEO-bench
- GEO-bench is a benchmarking platform for content optimization Methods for generative engines.
- It is a part of the work released under [GEO](https://arxiv.org/abs/2311.09735)
- The benchmark comprises of 9 datasets, 7 of which were publicly available, while 2 have been released by us.
- Dataset can be downloaded from [here](huggingface.co/datasets/GEO-optim/geo-bench)""")
with gr.Row():
# Goal of benchmarking content optimization for generative engines
# Contains 10K carefully curated queries
# Queries are diverse and cover many domains/intents
# Annotated with tags/dimensions like domain, difficulty, etc.
# Above list in HTML format
gr.HTML(f"""
<h3>Key-Highlights of GEO-bench</h3>
<ul>
<li>Goal of benchmarking content optimization for generative engines</li>
<li>Contains 10K carefully curated queries</li>
<li>Queries are diverse and cover many domains/intents</li>
<li>Annotated with tags/dimensions like domain, difficulty, etc.</li>
</ul>
""")
# Benchmark Link:
# gr.Markdown(f"""### Benchmark Link: [GEO-bench](huggingface.co/datasets/GEO-optim/geo-bench)""")
# Info about tags and other statistics
with gr.TabItem('Submit π'):
with gr.Row():
gr.Markdown(f"""
## Submit
- To submit your Method, please check [here](github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/Readme.md)""")
# Create a form to submit, the response should be sent to a google form
search_bar.submit(fn=search_button_click, inputs=search_bar, outputs=data_overall)
if __name__ == "__main__":
demo.launch(share=True) |