Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,89 +6,56 @@ from salesforce_integration import fetch_poles
|
|
6 |
from modules.visuals import display_dashboard, display_charts
|
7 |
|
8 |
# Title
|
9 |
-
st.title("
|
10 |
|
11 |
# Fetch the raw data from Salesforce
|
12 |
df = fetch_poles()
|
13 |
|
14 |
# --- Sidebar Filters ---
|
15 |
-
st.sidebar.header("
|
16 |
-
|
17 |
-
# Alert Level Filter
|
18 |
selected_alert_levels = st.sidebar.multiselect(
|
19 |
"Alert Level", ["Red", "Yellow", "Green"], default=["Red", "Yellow", "Green"]
|
20 |
)
|
21 |
-
|
22 |
-
# Camera Status Filter
|
23 |
-
selected_camera_status = st.sidebar.selectbox(
|
24 |
-
"Camera Status", ["All", "Online", "Offline"]
|
25 |
-
)
|
26 |
-
|
27 |
-
# Site Filter with "All" option
|
28 |
site_options = ["All"] + df["Site__c"].dropna().unique().tolist()
|
29 |
selected_site = st.sidebar.selectbox("Site", site_options, index=0)
|
30 |
|
31 |
# --- Filtering Logic ---
|
32 |
filtered_df = df[df["Alert_Level__c"].isin(selected_alert_levels)]
|
33 |
-
|
34 |
if selected_camera_status != "All":
|
35 |
filtered_df = filtered_df[filtered_df["Camera_Status__c"] == selected_camera_status]
|
36 |
-
|
37 |
if selected_site != "All":
|
38 |
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
|
39 |
|
40 |
-
# --- Count Faults Based on Alert Level ---
|
41 |
-
# Assuming default 0 fault count or based on Alert Level:
|
42 |
-
filtered_df["Fault_Count__c"] = filtered_df["Alert_Level__c"].apply(
|
43 |
-
lambda x: 3 if x == "Red" else (2 if x == "Yellow" else 1)
|
44 |
-
)
|
45 |
-
|
46 |
# --- Display System Summary ---
|
47 |
display_dashboard(filtered_df)
|
48 |
|
49 |
# --- Pole Table ---
|
50 |
-
st.subheader("
|
51 |
st.dataframe(filtered_df, use_container_width=True)
|
52 |
|
53 |
# --- Energy Generation Chart ---
|
54 |
st.subheader("⚙ Energy Generation (Solar vs Wind)")
|
55 |
st.plotly_chart(px.bar(
|
56 |
-
filtered_df,
|
57 |
-
x="Name",
|
58 |
-
y=["Solar_Generation__c", "Wind_Generation__c"],
|
59 |
-
barmode="group"
|
60 |
))
|
61 |
|
62 |
-
|
63 |
# --- Alert Level Breakdown Chart ---
|
64 |
display_charts(filtered_df)
|
65 |
|
66 |
-
|
67 |
-
# Fetch the raw data from Salesforce
|
68 |
-
df = fetch_poles()
|
69 |
-
|
70 |
# Define function to generate heatmap based on site
|
71 |
def generate_heatmap_for_site(site_name, df):
|
72 |
site_df = df[df['Site__c'] == site_name]
|
73 |
|
74 |
-
# Define color mapping for
|
75 |
-
def get_fault_level(fault_count):
|
76 |
-
if fault_count <= 1:
|
77 |
-
return "Green"
|
78 |
-
elif 2 <= fault_count <= 3:
|
79 |
-
return "Yellow"
|
80 |
-
else:
|
81 |
-
return "Red"
|
82 |
-
|
83 |
color_map = {
|
84 |
"Green": [0, 255, 0],
|
85 |
"Yellow": [255, 255, 0],
|
86 |
"Red": [255, 0, 0]
|
87 |
}
|
88 |
|
89 |
-
|
90 |
-
site_df["
|
91 |
-
site_df["color"] = site_df["Fault_Level"].map(color_map)
|
92 |
|
93 |
# Create a Pydeck map for the site
|
94 |
layer = pdk.Layer(
|
@@ -112,7 +79,6 @@ def generate_heatmap_for_site(site_name, df):
|
|
112 |
"html": """
|
113 |
<b>Pole Name:</b> {Name}<br>
|
114 |
<b>Site:</b> {Site__c}<br>
|
115 |
-
<b>Fault Count:</b> {Fault_Count__c}<br>
|
116 |
<b>Alert Level:</b> {Alert_Level__c}<br>
|
117 |
<b>RFID Tag:</b> {RFID_Tag__c}<br>
|
118 |
<b>Tilt:</b> {Tilt__c}<br>
|
@@ -130,19 +96,17 @@ def generate_heatmap_for_site(site_name, df):
|
|
130 |
layers=[layer],
|
131 |
tooltip=tooltip
|
132 |
)
|
133 |
-
|
134 |
# Divide into four columns (Hyderabad, Kurnool, Ballari, Gadwal)
|
135 |
col1, col2 = st.columns(2)
|
136 |
with col1:
|
137 |
st.subheader("Hyderabad")
|
138 |
st.pydeck_chart(generate_heatmap_for_site("Hyderabad", df))
|
139 |
-
|
140 |
st.subheader("Kurnool")
|
141 |
st.pydeck_chart(generate_heatmap_for_site("Kurnool", df))
|
142 |
|
143 |
with col2:
|
144 |
st.subheader("Ballari")
|
145 |
st.pydeck_chart(generate_heatmap_for_site("Ballari", df))
|
146 |
-
|
147 |
st.subheader("Gadwal")
|
148 |
st.pydeck_chart(generate_heatmap_for_site("Gadwal", df))
|
|
|
6 |
from modules.visuals import display_dashboard, display_charts
|
7 |
|
8 |
# Title
|
9 |
+
st.title("VIEP Smart Poles Dashboard")
|
10 |
|
11 |
# Fetch the raw data from Salesforce
|
12 |
df = fetch_poles()
|
13 |
|
14 |
# --- Sidebar Filters ---
|
15 |
+
st.sidebar.header("Filter Data")
|
|
|
|
|
16 |
selected_alert_levels = st.sidebar.multiselect(
|
17 |
"Alert Level", ["Red", "Yellow", "Green"], default=["Red", "Yellow", "Green"]
|
18 |
)
|
19 |
+
selected_camera_status = st.sidebar.selectbox("Camera Status", ["All", "Online", "Offline"])
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
site_options = ["All"] + df["Site__c"].dropna().unique().tolist()
|
21 |
selected_site = st.sidebar.selectbox("Site", site_options, index=0)
|
22 |
|
23 |
# --- Filtering Logic ---
|
24 |
filtered_df = df[df["Alert_Level__c"].isin(selected_alert_levels)]
|
|
|
25 |
if selected_camera_status != "All":
|
26 |
filtered_df = filtered_df[filtered_df["Camera_Status__c"] == selected_camera_status]
|
|
|
27 |
if selected_site != "All":
|
28 |
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# --- Display System Summary ---
|
31 |
display_dashboard(filtered_df)
|
32 |
|
33 |
# --- Pole Table ---
|
34 |
+
st.subheader("Pole Table")
|
35 |
st.dataframe(filtered_df, use_container_width=True)
|
36 |
|
37 |
# --- Energy Generation Chart ---
|
38 |
st.subheader("⚙ Energy Generation (Solar vs Wind)")
|
39 |
st.plotly_chart(px.bar(
|
40 |
+
filtered_df, x="Name", y=["Solar_Generation__c", "Wind_Generation__c"], barmode="group"
|
|
|
|
|
|
|
41 |
))
|
42 |
|
|
|
43 |
# --- Alert Level Breakdown Chart ---
|
44 |
display_charts(filtered_df)
|
45 |
|
|
|
|
|
|
|
|
|
46 |
# Define function to generate heatmap based on site
|
47 |
def generate_heatmap_for_site(site_name, df):
|
48 |
site_df = df[df['Site__c'] == site_name]
|
49 |
|
50 |
+
# Define color mapping for alert levels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
color_map = {
|
52 |
"Green": [0, 255, 0],
|
53 |
"Yellow": [255, 255, 0],
|
54 |
"Red": [255, 0, 0]
|
55 |
}
|
56 |
|
57 |
+
# Assign colors based on Alert Level
|
58 |
+
site_df["color"] = site_df["Alert_Level__c"].map(color_map)
|
|
|
59 |
|
60 |
# Create a Pydeck map for the site
|
61 |
layer = pdk.Layer(
|
|
|
79 |
"html": """
|
80 |
<b>Pole Name:</b> {Name}<br>
|
81 |
<b>Site:</b> {Site__c}<br>
|
|
|
82 |
<b>Alert Level:</b> {Alert_Level__c}<br>
|
83 |
<b>RFID Tag:</b> {RFID_Tag__c}<br>
|
84 |
<b>Tilt:</b> {Tilt__c}<br>
|
|
|
96 |
layers=[layer],
|
97 |
tooltip=tooltip
|
98 |
)
|
99 |
+
|
100 |
# Divide into four columns (Hyderabad, Kurnool, Ballari, Gadwal)
|
101 |
col1, col2 = st.columns(2)
|
102 |
with col1:
|
103 |
st.subheader("Hyderabad")
|
104 |
st.pydeck_chart(generate_heatmap_for_site("Hyderabad", df))
|
|
|
105 |
st.subheader("Kurnool")
|
106 |
st.pydeck_chart(generate_heatmap_for_site("Kurnool", df))
|
107 |
|
108 |
with col2:
|
109 |
st.subheader("Ballari")
|
110 |
st.pydeck_chart(generate_heatmap_for_site("Ballari", df))
|
|
|
111 |
st.subheader("Gadwal")
|
112 |
st.pydeck_chart(generate_heatmap_for_site("Gadwal", df))
|