Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,64 +63,85 @@ st.plotly_chart(px.bar(
|
|
63 |
# --- Alert Level Breakdown Chart ---
|
64 |
display_charts(filtered_df)
|
65 |
|
66 |
-
# --- Heatmap Section ---
|
67 |
-
st.subheader("🌡 Pole Fault Heatmap")
|
68 |
-
|
69 |
-
# Map Color based on Faults
|
70 |
-
def get_fault_level(fault_count):
|
71 |
-
if fault_count <= 1:
|
72 |
-
return "Green"
|
73 |
-
elif 2 <= fault_count <= 3:
|
74 |
-
return "Yellow"
|
75 |
-
else:
|
76 |
-
return "Red"
|
77 |
-
|
78 |
-
filtered_df["Fault_Level"] = filtered_df["Fault_Count__c"].apply(get_fault_level)
|
79 |
-
|
80 |
-
color_map = {
|
81 |
-
"Green": [0, 255, 0],
|
82 |
-
"Yellow": [255, 255, 0],
|
83 |
-
"Red": [255, 0, 0]
|
84 |
-
}
|
85 |
-
filtered_df["color"] = filtered_df["Fault_Level"].map(color_map)
|
86 |
-
|
87 |
-
# Pydeck Map
|
88 |
-
layer = pdk.Layer(
|
89 |
-
"ScatterplotLayer",
|
90 |
-
data=filtered_df,
|
91 |
-
get_position='[Longitude__c, Latitude__c]',
|
92 |
-
get_color="color",
|
93 |
-
get_radius=80,
|
94 |
-
pickable=True,
|
95 |
-
auto_highlight=True
|
96 |
-
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
longitude=filtered_df["Location_Longitude__c"].mean(),
|
101 |
-
zoom=10,
|
102 |
-
pitch=40
|
103 |
-
)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
}
|
119 |
-
}
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# --- Alert Level Breakdown Chart ---
|
64 |
display_charts(filtered_df)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# Fetch the raw data from Salesforce
|
68 |
+
df = fetch_poles()
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Define function to generate heatmap based on site
|
71 |
+
def generate_heatmap_for_site(site_name, df):
|
72 |
+
site_df = df[df['Site__c'] == site_name]
|
73 |
+
|
74 |
+
# Define color mapping for fault levels
|
75 |
+
def get_fault_level(fault_count):
|
76 |
+
if fault_count <= 1:
|
77 |
+
return "Green"
|
78 |
+
elif 2 <= fault_count <= 3:
|
79 |
+
return "Yellow"
|
80 |
+
else:
|
81 |
+
return "Red"
|
82 |
+
|
83 |
+
color_map = {
|
84 |
+
"Green": [0, 255, 0],
|
85 |
+
"Yellow": [255, 255, 0],
|
86 |
+
"Red": [255, 0, 0]
|
87 |
}
|
|
|
88 |
|
89 |
+
site_df["Fault_Level"] = site_df["Fault_Count__c"].apply(get_fault_level)
|
90 |
+
site_df["color"] = site_df["Fault_Level"].map(color_map)
|
91 |
+
|
92 |
+
# Create a Pydeck map for the site
|
93 |
+
layer = pdk.Layer(
|
94 |
+
"ScatterplotLayer",
|
95 |
+
data=site_df,
|
96 |
+
get_position='[Longitude__c, Latitude__c]',
|
97 |
+
get_color="color",
|
98 |
+
get_radius=80,
|
99 |
+
pickable=True,
|
100 |
+
auto_highlight=True
|
101 |
+
)
|
102 |
+
|
103 |
+
view_state = pdk.ViewState(
|
104 |
+
latitude=site_df["Location_Latitude__c"].mean(),
|
105 |
+
longitude=site_df["Location_Longitude__c"].mean(),
|
106 |
+
zoom=10,
|
107 |
+
pitch=40
|
108 |
+
)
|
109 |
+
|
110 |
+
tooltip = {
|
111 |
+
"html": """
|
112 |
+
<b>Pole Name:</b> {Name}<br>
|
113 |
+
<b>Site:</b> {Site__c}<br>
|
114 |
+
<b>Fault Count:</b> {Fault_Count__c}<br>
|
115 |
+
<b>Alert Level:</b> {Alert_Level__c}<br>
|
116 |
+
<b>RFID Tag:</b> {RFID_Tag__c}<br>
|
117 |
+
<b>Tilt:</b> {Tilt__c}<br>
|
118 |
+
<b>Vibration:</b> {Vibration__c}
|
119 |
+
""",
|
120 |
+
"style": {
|
121 |
+
"backgroundColor": "steelblue",
|
122 |
+
"color": "white"
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
return pdk.Deck(
|
127 |
+
map_style="mapbox://styles/mapbox/dark-v10",
|
128 |
+
initial_view_state=view_state,
|
129 |
+
layers=[layer],
|
130 |
+
tooltip=tooltip
|
131 |
+
)
|
132 |
+
|
133 |
+
# Divide into four columns (Hyderabad, Kurnool, Ballari, Gadwal)
|
134 |
+
col1, col2 = st.columns(2)
|
135 |
+
with col1:
|
136 |
+
st.subheader("Hyderabad")
|
137 |
+
st.pydeck_chart(generate_heatmap_for_site("Hyderabad", df))
|
138 |
+
|
139 |
+
st.subheader("Kurnool")
|
140 |
+
st.pydeck_chart(generate_heatmap_for_site("Kurnool", df))
|
141 |
+
|
142 |
+
with col2:
|
143 |
+
st.subheader("Ballari")
|
144 |
+
st.pydeck_chart(generate_heatmap_for_site("Ballari", df))
|
145 |
+
|
146 |
+
st.subheader("Gadwal")
|
147 |
+
st.pydeck_chart(generate_heatmap_for_site("Gadwal", df))
|