Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,24 @@
|
|
1 |
-
import pandas as pd
|
2 |
import streamlit as st
|
|
|
|
|
3 |
import pydeck as pdk
|
4 |
from salesforce_integration import fetch_poles
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Fetch the raw data from Salesforce
|
7 |
df = fetch_poles()
|
8 |
|
9 |
# --- Sidebar Filters ---
|
10 |
st.sidebar.header("Filter Data")
|
11 |
-
|
12 |
-
|
|
|
13 |
selected_camera_status = st.sidebar.selectbox("Camera Status", ["All", "Online", "Offline"])
|
|
|
|
|
14 |
|
15 |
# --- Filtering Logic ---
|
16 |
filtered_df = df[df["Alert_Level__c"].isin(selected_alert_levels)]
|
@@ -19,65 +27,89 @@ if selected_camera_status != "All":
|
|
19 |
if selected_site != "All":
|
20 |
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
|
21 |
|
22 |
-
# --- Display Summary ---
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
col3.metric("Power Insufficiencies", filtered_df[filtered_df['Power_Status__c'] == 'Insufficient'].shape[0])
|
28 |
-
|
29 |
-
# --- Table View ---
|
30 |
-
st.subheader("Pole Data Table")
|
31 |
-
with st.expander("Filter Options"):
|
32 |
-
alert_filter = st.multiselect("Alert Level", options=filtered_df['Alert_Level__c'].unique(), default=filtered_df['Alert_Level__c'].unique())
|
33 |
-
camera_filter = st.multiselect("Camera Status", options=filtered_df['Camera_Status__c'].unique(), default=filtered_df['Camera_Status__c'].unique())
|
34 |
-
filtered_df = filtered_df[(filtered_df['Alert_Level__c'].isin(alert_filter)) & (filtered_df['Camera_Status__c'].isin(camera_filter))]
|
35 |
st.dataframe(filtered_df, use_container_width=True)
|
36 |
|
37 |
-
# ---
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
}
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
import pydeck as pdk
|
5 |
from salesforce_integration import fetch_poles
|
6 |
+
from modules.visuals import display_dashboard, display_charts
|
7 |
+
|
8 |
+
# Title
|
9 |
+
st.title("VIEP Smart Poles Dashboard")
|
10 |
|
11 |
# Fetch the raw data from Salesforce
|
12 |
df = fetch_poles()
|
13 |
|
14 |
# --- Sidebar Filters ---
|
15 |
st.sidebar.header("Filter Data")
|
16 |
+
selected_alert_levels = st.sidebar.multiselect(
|
17 |
+
"Alert Level", ["Red", "Yellow", "Green"], default=["Red", "Yellow", "Green"]
|
18 |
+
)
|
19 |
selected_camera_status = st.sidebar.selectbox("Camera Status", ["All", "Online", "Offline"])
|
20 |
+
site_options = ["All"] + df["Site__c"].dropna().unique().tolist()
|
21 |
+
selected_site = st.sidebar.selectbox("Site", site_options, index=0)
|
22 |
|
23 |
# --- Filtering Logic ---
|
24 |
filtered_df = df[df["Alert_Level__c"].isin(selected_alert_levels)]
|
|
|
27 |
if selected_site != "All":
|
28 |
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
|
29 |
|
30 |
+
# --- Display System Summary ---
|
31 |
+
display_dashboard(filtered_df)
|
32 |
+
|
33 |
+
# --- Pole Table ---
|
34 |
+
st.subheader("Pole Table")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
st.dataframe(filtered_df, use_container_width=True)
|
36 |
|
37 |
+
# --- Energy Generation Chart ---
|
38 |
+
st.subheader("⚙ Energy Generation (Solar vs Wind)")
|
39 |
+
st.plotly_chart(px.bar(
|
40 |
+
filtered_df, x="Name", y=["Solar_Generation__c", "Wind_Generation__c"], barmode="group"
|
41 |
+
))
|
42 |
+
|
43 |
+
# --- Alert Level Breakdown Chart ---
|
44 |
+
display_charts(filtered_df)
|
45 |
+
|
46 |
+
# Define function to generate heatmap based on site
|
47 |
+
def generate_heatmap_for_site(site_name, df):
|
48 |
+
site_df = df[df['Site__c'] == site_name]
|
49 |
+
|
50 |
+
# Ensure that Alert_Level__c is treated as a string (for color mapping)
|
51 |
+
site_df['Alert_Level__c'] = site_df['Alert_Level__c'].astype(str)
|
52 |
+
|
53 |
+
# Define color mapping for alert levels
|
54 |
+
color_map = {
|
55 |
+
"Green": [0, 255, 0],
|
56 |
+
"Yellow": [255, 255, 0],
|
57 |
+
"Red": [255, 0, 0]
|
58 |
+
}
|
59 |
+
|
60 |
+
# Create a color column based on Alert_Level__c
|
61 |
+
site_df["color"] = site_df["Alert_Level__c"].map(color_map)
|
62 |
+
|
63 |
+
# Create a Pydeck map for the site
|
64 |
+
layer = pdk.Layer(
|
65 |
+
"ScatterplotLayer",
|
66 |
+
data=site_df,
|
67 |
+
get_position='[Longitude__c, Latitude__c]',
|
68 |
+
get_color="color",
|
69 |
+
get_radius=80, # You can adjust the radius if needed
|
70 |
+
pickable=True,
|
71 |
+
auto_highlight=True
|
72 |
+
)
|
73 |
+
|
74 |
+
view_state = pdk.ViewState(
|
75 |
+
latitude=site_df["Location_Latitude__c"].mean(),
|
76 |
+
longitude=site_df["Location_Longitude__c"].mean(),
|
77 |
+
zoom=10,
|
78 |
+
pitch=40
|
79 |
+
)
|
80 |
+
|
81 |
+
tooltip = {
|
82 |
+
"html": """
|
83 |
+
<b>Pole Name:</b> {Name}<br>
|
84 |
+
<b>Site:</b> {Site__c}<br>
|
85 |
+
<b>Alert Level:</b> {Alert_Level__c}<br>
|
86 |
+
<b>RFID Tag:</b> {RFID_Tag__c}<br>
|
87 |
+
<b>Tilt:</b> {Tilt__c}<br>
|
88 |
+
<b>Vibration:</b> {Vibration__c}
|
89 |
+
""",
|
90 |
+
"style": {
|
91 |
+
"backgroundColor": "steelblue",
|
92 |
+
"color": "white"
|
93 |
}
|
94 |
+
}
|
95 |
+
# Return the heatmap
|
96 |
+
return pdk.Deck(
|
97 |
+
map_style="mapbox://styles/mapbox/dark-v10",
|
98 |
+
initial_view_state=view_state,
|
99 |
+
layers=[layer],
|
100 |
+
tooltip=tooltip
|
101 |
+
)
|
102 |
+
|
103 |
+
# Divide into four columns (Hyderabad, Kurnool, Ballari, Gadwal)
|
104 |
+
col1, col2 = st.columns(2)
|
105 |
+
with col1:
|
106 |
+
st.subheader("Hyderabad")
|
107 |
+
st.pydeck_chart(generate_heatmap_for_site("Hyderabad", df))
|
108 |
+
st.subheader("Kurnool")
|
109 |
+
st.pydeck_chart(generate_heatmap_for_site("Kurnool", df))
|
110 |
+
|
111 |
+
with col2:
|
112 |
+
st.subheader("Ballari")
|
113 |
+
st.pydeck_chart(generate_heatmap_for_site("Ballari", df))
|
114 |
+
st.subheader("Gadwal")
|
115 |
+
st.pydeck_chart(generate_heatmap_for_site("Gadwal", df))
|