Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_chat import message | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import DirectoryLoader | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import CTransformers | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.document_loaders.csv_loader import CSVLoader | |
import requests | |
from PIL import Image | |
import pydeck as pdk | |
import os | |
import json | |
st.set_page_config( | |
page_title="FoodGPT - Nagpur Based Food Recommendation System.", | |
page_icon="π", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
) | |
from langchain.document_loaders.csv_loader import CSVLoader | |
loader = CSVLoader(file_path='data.csv') | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) | |
text_chunks = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device':"cpu"}) | |
vector_store = FAISS.from_documents(text_chunks,embeddings) | |
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0 10.47.24 AM.bin",model_type="llama", | |
config={'max_new_tokens':128,'temperature':0.01}) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
chain = ConversationalRetrievalChain.from_llm(llm=llm,chain_type='stuff', | |
retriever=vector_store.as_retriever(search_kwargs={"k":2}), | |
memory=memory) | |
# Sidebar for user input | |
st.sidebar.title("FoodGPT!π") | |
st.sidebar.info("FoodGPT : A Nagpur Based Food Recommendation Chat! Recommends you the best locally recognized brands for your cravings! As this system is backed with LLMA-2 on hand picked data.") | |
github_link = "[GitHub]('https://github.com/prasanna-muppidwar/Nagpur-FoodGPT')" | |
st.sidebar.info("To contribute and Sponser - " + github_link) | |
st.title("FoodGPT: A Nagpur based Food Recommendation Bot! π") | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello! I'm FoodGPT, Ask me anything about Nagpur's Food."] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Hello!"] | |
reply_container = st.container() | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Question:", placeholder="Ask anything about Nagpur's Food Joints or cravings", key='input') | |
image_upload = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
submit_button = st.form_submit_button(label='Send') | |
try: | |
if submit_button and user_input: | |
output = chain({"question": user_input, "chat_history": st.session_state['history']})["answer"] | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
if st.session_state['generated']: | |
with reply_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") | |
import requests | |
import streamlit as st | |
import time | |
def query_image_classification(image_bytes, max_retries=3): | |
for retry in range(max_retries): | |
try: | |
response = requests.post(API_URL, headers=HEADERS, data=image_bytes) | |
response.raise_for_status() # Raise an error for non-2xx HTTP responses | |
result = response.json() | |
return result | |
except requests.exceptions.RequestException as e: | |
st.error(f"An error occurred during the API request: {str(e)}") | |
except ValueError as e: | |
st.error(f"An error occurred while processing the API response: {str(e)}") | |
if retry < max_retries - 1: | |
st.warning(f"Retrying request (attempt {retry + 1}/{max_retries})...") | |
time.sleep(1) # Wait for a moment before retrying | |
st.error("No classification result received after multiple retries.") | |
return None | |
if image_upload: | |
image_bytes = image_upload.read() | |
classification_result = query_image_classification(image_bytes) | |
if classification_result: | |
st.image(image_upload, caption="Uploaded Image", use_column_width=True) | |
if isinstance(classification_result, list) and classification_result: | |
# Ensure that classification_result is a list of results and not empty | |
best_label = max(classification_result, key=lambda x: x.get('score', 0)) | |
if 'label' in best_label: | |
st.header("Image Classification Result:") | |
st.write(f"Classified as: {best_label['label']}") | |
else: | |
st.error("Invalid classification result format. Missing 'label' key.") | |
else: | |
st.error("Invalid classification result format or empty result list.") | |
import pydeck as pdk | |
st.title("Nagpur Map") | |
center = [21.1458, 79.0882] | |
st.pydeck_chart( | |
pdk.Deck( | |
map_style="mapbox://styles/mapbox/light-v9", | |
initial_view_state={ | |
"latitude": center[0], | |
"longitude": center[1], | |
"zoom": 13, | |
"pitch": 10, | |
}, | |
layers=[ | |
pdk.Layer( | |
"ScatterplotLayer", | |
data=[{"position": center, "tooltip": "Nagpur"}], | |
get_position="position", | |
get_radius=10000, | |
get_color=[255, 0, 0], | |
pickable=True, | |
), | |
], | |
) | |
) | |