Spaces:
Sleeping
Sleeping
from llama_index.core.indices.vector_store.base import VectorStoreIndex | |
from llama_index.vector_stores.qdrant import QdrantVectorStore | |
from llama_index.core import Settings | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext | |
import qdrant_client | |
from llama_index.core.indices.query.schema import QueryBundle | |
from llama_index.llms.gemini import Gemini | |
from llama_index.embeddings.gemini import GeminiEmbedding | |
from llama_index.core.memory import ChatMemoryBuffer | |
import gradio as gr | |
import os | |
def embed_setup(): | |
Settings.embed_model = GeminiEmbedding(api_key=os.getenv("GEMINI_API_KEY"), model_name="models/embedding-001") | |
Settings.llm = Gemini(api_key=os.getenv("GEMINI_API_KEY"), temperature=0.1,model_name="models/gemini-pro") | |
def qdrant_setup(): | |
client = qdrant_client.QdrantClient( | |
os.getenv("QDRANT_URL"), | |
api_key = os.getenv("QDRANT_API_KEY"), | |
) | |
return client | |
def llm_setup(): | |
llm = Gemini(api_key=os.getenv("GEMINI_API_KEY"), temperature=0.6,model_name="models/gemini-pro") | |
return llm | |
def query_index(index, similarity_top_k=3, streaming=True): | |
memory = ChatMemoryBuffer.from_defaults(token_limit=4000) | |
chat_engine = index.as_chat_engine( | |
chat_mode="context", | |
memory=memory, | |
system_prompt = ( | |
"""You are an AI assistant named Buildspace_Bot, created by Buildspace. Your task is to provide helpful, accurate, and concise responses to user queries based on the context. | |
welcome to buildspace. | |
a home for ppl bringing their wildest | |
ideas to life. it all begins online. on nights and weekends. | |
this is where you will take any idea you’re excited about, figure out how to bring it to life, and turn it into something that people give a shit about — alongside thousands of others. | |
Context information is below: | |
---------------- | |
{context_str} | |
---------------- | |
Always answer based on the information in the context and be precise | |
Given this context, please respond to the following user query: | |
{query_str} | |
Also suggest 3 more questions based on the the context that the user can ask | |
Your response:""" | |
),) | |
return chat_engine | |
def get_response(text,history=None): | |
# Use the initialized query engine to perform the query | |
response = str(chat_engine.chat(text)) | |
return response | |
embed_setup() | |
client = qdrant_setup() | |
llm = llm_setup() | |
vector_store = QdrantVectorStore(client = client,collection_name=os.getenv("COLLECTION_NAME")) | |
index = VectorStoreIndex.from_vector_store(llm = llm, vector_store = vector_store) | |
chat_engine = query_index(index) # initialize the query engine | |
t = gr.ChatInterface(get_response, analytics_enabled=True) | |
t.launch(debug=True, share=True) | |