File size: 1,035 Bytes
b12440c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from fastapi import FastAPI
from pydantic import BaseModel
import joblib
import numpy as np
from sklearn.datasets import load_iris

# Load the trained model
model = joblib.load("iris_model.pkl")

app = FastAPI()


class IrisInput(BaseModel):
    sepal_length: float
    sepal_width: float
    petal_length: float
    petal_width: float


class IrisPrediction(BaseModel):
    predicted_class: int
    predicted_class_name: str


@app.post("/predict", response_model=IrisPrediction)
def predict(data: IrisInput):
    # Convert the input data to a numpy array
    input_data = np.array(
        [[data.sepal_length, data.sepal_width, data.petal_length, data.petal_width]]
    )

    # Make a prediction
    predicted_class = model.predict(input_data)[0]
    predicted_class_name = load_iris().target_names[predicted_class]

    return IrisPrediction(
        predicted_class=predicted_class, predicted_class_name=predicted_class_name
    )


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="127.0.0.1", port=8000)