Spaces:
Sleeping
Sleeping
File size: 3,919 Bytes
bacd0f5 1145213 bacd0f5 99b56c0 1145213 bacd0f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import groq
import io
import numpy as np
import soundfile as sf
import pyttsx3 # Text-to-speech conversion
# Initialize text-to-speech engine
tts_engine = pyttsx3.init()
def transcribe_audio(audio, api_key):
if audio is None:
return ""
client = groq.Client(api_key=api_key)
# Convert audio to the format expected by the model
audio_data = audio[1] # Get the numpy array from the tuple
buffer = io.BytesIO()
sf.write(buffer, audio_data, audio[0], format='wav')
buffer.seek(0)
try:
# Use Distil-Whisper English powered by Groq for transcription
completion = client.audio.transcriptions.create(
model="distil-whisper-large-v3-en",
file=("audio.wav", buffer),
response_format="text"
)
return completion
except Exception as e:
return f"Error in transcription: {str(e)}"
def generate_response(transcription, api_key):
if not transcription:
return "No transcription available. Please try speaking again."
client = groq.Client(api_key=api_key)
try:
# Use Llama 3 70B powered by Groq for text generation
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": transcription}]
)
return completion.choices[0].message.content
except Exception as e:
return f"Error in response generation: {str(e)}"
def convert_text_to_speech(text):
tts_engine.save_to_file(text, 'response_output.wav')
tts_engine.runAndWait()
with open("response_output.wav", "rb") as f:
audio_bytes = f.read()
return audio_bytes
def process_audio(audio, api_key):
if not api_key:
return "Please enter your Groq API key.", "API key is required."
transcription = transcribe_audio(audio, api_key)
response = generate_response(transcription, api_key)
if "Error" in response:
return transcription, response, None # In case of error, return empty audio
audio_output = convert_text_to_speech(response)
return transcription, response, audio_output
# Custom CSS
custom_css = """
.gradio-container {
background-color: #f5f5f5;
}
.gr-button-primary {
background-color: #f55036 !important;
border-color: #f55036 !important;
}
.gr-button-secondary {
color: #f55036 !important;
border-color: #f55036 !important;
}
#groq-badge {
position: fixed;
bottom: 20px;
right: 20px;
z-index: 1000;
}
"""
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# ๐๏ธ Groq x Gradio Voice-Powered AI Assistant")
api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key")
with gr.Row():
audio_input = gr.Audio(label="Speak!", type="numpy")
with gr.Row():
transcription_output = gr.Textbox(label="Transcription")
response_output = gr.Textbox(label="AI Assistant Response")
audio_output = gr.Audio(label="Voice Response", type="file")
submit_button = gr.Button("Process", variant="primary")
gr.HTML("""
<div id="groq-badge">
<div style="color: #f55036; font-weight: bold;">POWERED BY GROQ</div>
</div>
""")
submit_button.click(
process_audio,
inputs=[audio_input, api_key_input],
outputs=[transcription_output, response_output, audio_output]
)
gr.Markdown("""
## How to use this app:
1. Enter your [Groq API Key](https://console.groq.com/keys) in the provided field.
2. Click on the microphone icon and speak your message (or upload an audio file).
3. Click the "Process" button to transcribe your speech and generate a response from our AI assistant.
4. The transcription, AI assistant response, and voice response will appear.
""")
demo.launch()
|