Spaces:
Runtime error
Runtime error
File size: 9,623 Bytes
337965d 1f27f3e 337965d b633dd1 337965d 6b34730 337965d 8a5a3ed 337965d 8a5a3ed 337965d 8a5a3ed 337965d b633dd1 337965d 07b46f5 337965d 2844562 337965d 5c9ab89 337965d a023429 337965d 8a5a3ed fb3e909 f348140 337965d 07b46f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import random
import streamlit as st
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import clip
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
from torch.optim import Adam
from stqdm import stqdm
torch.set_num_threads(8)
# Speed up computation
torch.autograd.set_grad_enabled(True)
torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class= 'lookbook',
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocess = Compose([
Resize(224),
CenterCrop(224),
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
@st.cache_data
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
seed = int(seed)
text_input = clip.tokenize([text]).to(device)
# Initialize a random latent vector
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
latent_vector.requires_grad = True
latent_vector = [latent_vector]*model.get_max_latents()
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
optimizer = Adam(params, lr=lr, betas=(0.9, 0.999))
#with torch.no_grad():
# text_features = clip_model.encode_text(text_input)
#pbar = tqdm(range(iterations), dynamic_ncols=True)
for iteration in stqdm(range(iterations)):
optimizer.zero_grad()
# Generate an image from the latent vector
image = model.sample(params)
image = image.to(device)
# Preprocess the image for the CLIP model
image = preprocess(image)
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
# Extract features from the image
#image_features = clip_model.encode_image(image)
# Calculate the loss and backpropagate
loss = 1 - clip_model(image, text_input)[0] / 100
#loss = -torch.cosine_similarity(text_features, image_features).mean()
loss.backward()
optimizer.step()
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
w = [param.detach().cpu().numpy() for param in params]
return w
def mix_w(w1, w2, content, style):
for i in range(0,5):
w2[i] = w1[i] * (1 - content) + w2[i] * content
for i in range(5, 16):
w2[i] = w1[i] * (1 - style) + w2[i] * style
return w2
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w_numpy = [x.cpu().detach().numpy() for x in w]
w = [np.expand_dims(x, 0) for x in w_numpy]
#w = [x.unsqueeze(0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
w = [torch.from_numpy(x).to(device) for x in w]
torch.cuda.empty_cache()
#save image and display
out = model.sample(w)
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
out = np.clip(out, 0.0, 1.0).squeeze()
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
## Generate image for app
def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
if w1 is not None and w2 is not None:
w1 = [torch.from_numpy(x).to(device) for x in w1]
w2 = [torch.from_numpy(x).to(device) for x in w2]
#w1 = clip_optimized_latent(text1, seed1, iters)
im1 = model.sample(w1)
im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
#w2 = clip_optimized_latent(text2, seed2, iters)
im2 = model.sample(w2)
im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
combined_im = np.concatenate([im1_np, im2_np], axis=1)
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
mixed_w = mix_w(w1, w2, content, style)
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
# Streamlit app title
st.title("FashionGen Demo - AI assisted fashion design")
"""This application employs the StyleGAN framework, CLIP and GANSpace exploration techniques to synthesize images of garments from textual inputs. With training based on the comprehensive LookBook dataset, it supports an efficient fashion design process by transforming text into visual concepts, showcasing the practical application of Generative Adversarial Networks (GANs) in the realm of creative design."""
@st.cache_resource
def load_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the pre-trained CLIP model
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
inst = get_instrumented_model(config.model, config.output_class,
config.layer, device, use_w=config.use_w)
return clip_model, inst
# Then, to load your models, call this function:
clip_model, inst = load_model()
model = inst.model
clip_model.eval()
model.eval()
path_to_components = get_or_compute(config, inst)
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
## Side bar texts
st.sidebar.title('Tuning Parameters')
st.sidebar.subheader('(CLIP + GANSpace)')
# Create UI widgets
text1 = st.sidebar.text_input("Text Description 1")
text2 = st.sidebar.text_input("Text Description 2")
if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
st.session_state['seed1'] = random.randint(1, 1000)
st.session_state['seed2'] = random.randint(1, 1000)
seed1 = st.sidebar.number_input("Seed 1", value= st.session_state['seed1'])
seed2 = st.sidebar.number_input("Seed 2", value= st.session_state['seed2'])
st.session_state['seed1'] = seed1
st.session_state['seed2'] = seed2
iters = st.sidebar.number_input("Iterations for CLIP Optimization", value = 50)
submit_button = st.sidebar.button("Submit")
content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
slider_min_val = -20
slider_max_val = 20
slider_step = 1
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0)
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0)
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0)
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0)
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0)
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0)
c6 = st.sidebar.slider("Modest Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0)
start_layer = st.sidebar.number_input("Start Layer", value=0)
end_layer = st.sidebar.number_input("End Layer", value=14)
if submit_button: # Execute when the submit button is pressed
w1 = clip_optimized_latent(text1, seed1, iters)
st.session_state['w1-np'] = w1
w2 = clip_optimized_latent(text2, seed2, iters)
st.session_state['w2-np'] = w2
try:
input_im, output_im = generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w1-np'],st.session_state['w2-np'])
st.image(input_im, caption="Input Image")
st.image(output_im, caption="Output Image")
except:
pass |