File size: 9,309 Bytes
337965d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.

import torch
import numpy as np
from os import makedirs
from PIL import Image

import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))
from utils import prettify_name, pad_frames

# Apply edit to given latents, return strip of images
def create_strip(inst, mode, layer, latents, x_comp, z_comp, act_stdev, lat_stdev, sigma, layer_start, layer_end, num_frames=5):
    return _create_strip_impl(inst, mode, layer, latents, x_comp, z_comp, act_stdev,
                lat_stdev, None, None, sigma, layer_start, layer_end, num_frames, center=False)

# Strip where the sample is centered along the component before manipulation
def create_strip_centered(inst, mode, layer, latents, x_comp, z_comp, act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames=5):
    return _create_strip_impl(inst, mode, layer, latents, x_comp, z_comp, act_stdev,
                lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center=True)

def _create_strip_impl(inst, mode, layer, latents, x_comp, z_comp, act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center):
    if not isinstance(latents, list):
        latents = list(latents)

    max_lat = inst.model.get_max_latents()
    if layer_end < 0 or layer_end > max_lat:
        layer_end = max_lat
    layer_start = np.clip(layer_start, 0, layer_end)

    if len(latents) > num_frames:
        # Batch over latents
        return _create_strip_batch_lat(inst, mode, layer, latents, x_comp, z_comp,
            act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center)
    else:
        # Batch over strip frames
        return _create_strip_batch_sigma(inst, mode, layer, latents, x_comp, z_comp,
            act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center)

# Batch over frames if there are more frames in strip than latents
def _create_strip_batch_sigma(inst, mode, layer, latents, x_comp, z_comp, act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center):    
    inst.close()
    batch_frames = [[] for _ in range(len(latents))]
    
    B = min(num_frames, 5)
    lep_padded = ((num_frames - 1) // B + 1) * B
    sigma_range = np.linspace(-sigma, sigma, num_frames)
    sigma_range = np.concatenate([sigma_range, np.zeros((lep_padded - num_frames))])
    sigma_range = torch.from_numpy(sigma_range).float().to(inst.model.device)
    normalize = lambda v : v / torch.sqrt(torch.sum(v**2, dim=-1, keepdim=True) + 1e-8)

    for i_batch in range(lep_padded // B):
        sigmas = sigma_range[i_batch*B:(i_batch+1)*B]
        
        for i_lat in range(len(latents)):
            z_single = latents[i_lat]
            z_batch = z_single.repeat_interleave(B, axis=0)
            
            zeroing_offset_act = 0
            zeroing_offset_lat = 0
            if center:
                if mode == 'activation':
                    # Center along activation before applying offset
                    inst.retain_layer(layer)
                    _ = inst.model.sample_np(z_single)
                    value = inst.retained_features()[layer].clone()
                    dotp = torch.sum((value - act_mean)*normalize(x_comp), dim=-1, keepdim=True)
                    zeroing_offset_act = normalize(x_comp)*dotp # offset that sets coordinate to zero
                else:
                    # Shift latent to lie on mean along given component
                    dotp = torch.sum((z_single - lat_mean)*normalize(z_comp), dim=-1, keepdim=True)
                    zeroing_offset_lat = dotp*normalize(z_comp)

            with torch.no_grad():
                z = z_batch

                if mode in ['latent', 'both']:
                    z = [z]*inst.model.get_max_latents()
                    delta = z_comp * sigmas.reshape([-1] + [1]*(z_comp.ndim - 1)) * lat_stdev
                    for i in range(layer_start, layer_end):
                        z[i] = z[i] - zeroing_offset_lat + delta

                if mode in ['activation', 'both']:
                    comp_batch = x_comp.repeat_interleave(B, axis=0)
                    delta = comp_batch * sigmas.reshape([-1] + [1]*(comp_batch.ndim - 1))
                    inst.edit_layer(layer, offset=delta * act_stdev - zeroing_offset_act)

                img_batch = inst.model.sample_np(z)
                if img_batch.ndim == 3:
                    img_batch = np.expand_dims(img_batch, axis=0)
                    
                for j, img in enumerate(img_batch):
                    idx = i_batch*B + j
                    if idx < num_frames:
                        batch_frames[i_lat].append(img)

    return batch_frames

# Batch over latents if there are more latents than frames in strip
def _create_strip_batch_lat(inst, mode, layer, latents, x_comp, z_comp, act_stdev, lat_stdev, act_mean, lat_mean, sigma, layer_start, layer_end, num_frames, center):    
    n_lat = len(latents)
    B = min(n_lat, 5)

    max_lat = inst.model.get_max_latents()
    if layer_end < 0 or layer_end > max_lat:
        layer_end = max_lat
    layer_start = np.clip(layer_start, 0, layer_end)
    
    len_padded = ((n_lat - 1) // B + 1) * B
    batch_frames = [[] for _ in range(n_lat)]

    for i_batch in range(len_padded // B):
        zs = latents[i_batch*B:(i_batch+1)*B]
        if len(zs) == 0:
            continue
        
        z_batch_single = torch.cat(zs, 0)

        inst.close() # don't retain, remove edits
        sigma_range = np.linspace(-sigma, sigma, num_frames, dtype=np.float32)

        normalize = lambda v : v / torch.sqrt(torch.sum(v**2, dim=-1, keepdim=True) + 1e-8)
        
        zeroing_offset_act = 0
        zeroing_offset_lat = 0
        if center:
            if mode == 'activation':
                # Center along activation before applying offset
                inst.retain_layer(layer)
                _ = inst.model.sample_np(z_batch_single)
                value = inst.retained_features()[layer].clone()
                dotp = torch.sum((value - act_mean)*normalize(x_comp), dim=-1, keepdim=True)
                zeroing_offset_act = normalize(x_comp)*dotp # offset that sets coordinate to zero
            else:
                # Shift latent to lie on mean along given component
                dotp = torch.sum((z_batch_single - lat_mean)*normalize(z_comp), dim=-1, keepdim=True)
                zeroing_offset_lat = dotp*normalize(z_comp)

        for i in range(len(sigma_range)):
            s = sigma_range[i]

            with torch.no_grad():
                z = [z_batch_single]*inst.model.get_max_latents() # one per layer

                if mode in ['latent', 'both']:
                    delta = z_comp*s*lat_stdev
                    for i in range(layer_start, layer_end):
                        z[i] = z[i] - zeroing_offset_lat + delta

                if mode in ['activation', 'both']:
                    act_delta = x_comp*s*act_stdev
                    inst.edit_layer(layer, offset=act_delta - zeroing_offset_act)

                img_batch = inst.model.sample_np(z)
                if img_batch.ndim == 3:
                    img_batch = np.expand_dims(img_batch, axis=0)
                    
                for j, img in enumerate(img_batch):
                    img_idx = i_batch*B + j
                    if img_idx < n_lat:
                        batch_frames[img_idx].append(img)

    return batch_frames


def save_frames(title, model_name, rootdir, frames, strip_width=10):
    test_name = prettify_name(title)
    outdir = f'{rootdir}/{model_name}/{test_name}'
    makedirs(outdir, exist_ok=True)
    
    # Limit maximum resolution
    max_H = 512
    real_H = frames[0][0].shape[0]
    ratio = min(1.0, max_H / real_H)
    
    # Combined with first 10
    strips = [np.hstack(frames) for frames in frames[:strip_width]]
    if len(strips) >= strip_width:
        left_col = np.vstack(strips[0:strip_width//2])
        right_col = np.vstack(strips[5:10])
        grid = np.hstack([left_col, np.ones_like(left_col[:, :30]), right_col])
        im = Image.fromarray((255*grid).astype(np.uint8))
        im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
        im.save(f'{outdir}/{test_name}_all.png')
    else:
        print('Too few strips to create grid, creating just strips!')
    
    for ex_num, strip in enumerate(frames[:strip_width]):
        im = Image.fromarray(np.uint8(255*np.hstack(pad_frames(strip))))
        im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
        im.save(f'{outdir}/{test_name}_{ex_num}.png')