Spaces:
Runtime error
Runtime error
File size: 9,904 Bytes
ee887f3 9f9ad1d 06e04b1 ee887f3 64592be be2569e 64592be ee887f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import random
import streamlit as st
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import clip
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
from torch.optim import Adam
from stqdm import stqdm
st.set_page_config(
page_title="Style One",
page_icon="👗",
)
#torch.set_num_threads(8)
# Speed up computation
torch.autograd.set_grad_enabled(True)
torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class= 'lookbook',
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocess = Compose([
Resize(224),
CenterCrop(224),
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
@st.cache_data
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
seed = int(seed)
text_input = clip.tokenize([text]).to(device)
# Initialize a random latent vector
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
latent_vector.requires_grad = True
latent_vector = [latent_vector]*model.get_max_latents()
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
optimizer = Adam(params, lr=lr, betas=(0.9, 0.999))
#with torch.no_grad():
# text_features = clip_model.encode_text(text_input)
#pbar = tqdm(range(iterations), dynamic_ncols=True)
for iteration in stqdm(range(iterations)):
optimizer.zero_grad()
# Generate an image from the latent vector
image = model.sample(params)
image = image.to(device)
# Preprocess the image for the CLIP model
image = preprocess(image)
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
# Extract features from the image
#image_features = clip_model.encode_image(image)
# Calculate the loss and backpropagate
loss = 1 - clip_model(image, text_input)[0] / 100
#loss = -torch.cosine_similarity(text_features, image_features).mean()
loss.backward()
optimizer.step()
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
w = [param.detach().cpu().numpy() for param in params]
return w
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w_numpy = [x.cpu().detach().numpy() for x in w]
w = [np.expand_dims(x, 0) for x in w_numpy]
#w = [x.unsqueeze(0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
w = [torch.from_numpy(x).to(device) for x in w]
torch.cuda.empty_cache()
#save image and display
out = model.sample(w)
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
out = np.clip(out, 0.0, 1.0).squeeze()
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
## Generate image for app
def generate_image(truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w):
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
if w is not None:
w = [torch.from_numpy(x).to(device) for x in w]
#w1 = clip_optimized_latent(text1, seed1, iters)
im = model.sample(w)
im_np = im.permute(0, 2, 3, 1).cpu().detach().numpy()
im_np = np.clip(im_np, 0.0, 1.0).squeeze()
input_im = Image.fromarray((im_np * 255).astype(np.uint8))
seed = 0
return input_im, display_sample_pytorch(seed, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=w, disp=False)
# Streamlit app title
st.image('./pics/logo.jpeg')
'''## Style One'''
@st.cache_resource
def load_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the pre-trained CLIP model
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
inst = get_instrumented_model(config.model, config.output_class,
config.layer, device, use_w=config.use_w)
return clip_model, inst
# Then, to load your models, call this function:
clip_model, inst = load_model()
model = inst.model
path_to_components = get_or_compute(config, inst)
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
## Side bar texts
st.sidebar.title('Customization Options')
# Create UI widgets
text = st.sidebar.text_input("Style Specs", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
if 'seed' not in st.session_state:
#st.session_state['seed'] = random.randint(1, 1000)
st.session_state['seed'] = 200
with st.sidebar.expander("Advanced"):
seed = st.number_input("ID", value= st.session_state['seed'], help = "Capture this unique id to reproduce the exact same result later.")
st.session_state['seed'] = seed
iters = st.number_input("Cycles", value = 25, help = "Increase the sensitivity of the algorithm to find the design matching the style description. Higher values might enhance the accuracy but may lead to slower loading times")
submit_button = st.sidebar.button("Discover")
# content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
# style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
truncation = 0.5
#truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
slider_min_val = -20
slider_max_val = 20
slider_step = 1
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0, help="Adjust the scaling of sleeve sizes. Increase to make sleeve sizes appear larger, and decrease to make them appear smaller.")
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of jacket features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Modify the dominance of the women's overcoat style. Increase the value to enhance its prominence, and decrease it to reduce its impact.")
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of coat features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Fine-tune the visibility of graphic elements. Increasing this value will make the graphics more prominent, while decreasing it will make them less visible.")
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Adjust the intensity of the color tones towards darker shades. Increasing this value will make the colors appear deeper, while decreasing it will lighten the overall color palette.")
c6 = st.sidebar.slider("Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0,help = "Control the emphasis on the neckline of the garment. Increase to highlight the neckline, and decrease to downplay its prominence.")
start_layer = 0
end_layer = 14
#start_layer = st.sidebar.number_input("Start Layer", value=0)
#end_layer = st.sidebar.number_input("End Layer", value=14)
# if 'w-np' not in st.session_state:
# st.session_state['w-np'] = None
if submit_button: # Execute when the submit button is pressed
w = clip_optimized_latent(text, seed, iters)
st.session_state['w-np'] = w
try:
input_im, output_im = generate_image(truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w-np'])
st.image(input_im, caption="Input Image")
st.image(output_im, caption="Output Image")
except:
pass
|