Prathm's picture
Duplicate from safi842/FashionGen
337965d
import argparse
import os
import sys
import pickle
import math
import torch
import numpy as np
from torchvision import utils
from model import Generator, Discriminator
def convert_modconv(vars, source_name, target_name, flip=False):
weight = vars[source_name + '/weight'].value().eval()
mod_weight = vars[source_name + '/mod_weight'].value().eval()
mod_bias = vars[source_name + '/mod_bias'].value().eval()
noise = vars[source_name + '/noise_strength'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {
'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
'conv.modulation.weight': mod_weight.transpose((1, 0)),
'conv.modulation.bias': mod_bias + 1,
'noise.weight': np.array([noise]),
'activate.bias': bias,
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
if flip:
dic_torch[target_name + '.conv.weight'] = torch.flip(
dic_torch[target_name + '.conv.weight'], [3, 4]
)
return dic_torch
def convert_conv(vars, source_name, target_name, bias=True, start=0):
weight = vars[source_name + '/weight'].value().eval()
dic = {'weight': weight.transpose((3, 2, 0, 1))}
if bias:
dic['bias'] = vars[source_name + '/bias'].value().eval()
dic_torch = {}
dic_torch[target_name + f'.{start}.weight'] = torch.from_numpy(dic['weight'])
if bias:
dic_torch[target_name + f'.{start + 1}.bias'] = torch.from_numpy(dic['bias'])
return dic_torch
def convert_torgb(vars, source_name, target_name):
weight = vars[source_name + '/weight'].value().eval()
mod_weight = vars[source_name + '/mod_weight'].value().eval()
mod_bias = vars[source_name + '/mod_bias'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {
'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
'conv.modulation.weight': mod_weight.transpose((1, 0)),
'conv.modulation.bias': mod_bias + 1,
'bias': bias.reshape((1, 3, 1, 1)),
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
return dic_torch
def convert_dense(vars, source_name, target_name):
weight = vars[source_name + '/weight'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {'weight': weight.transpose((1, 0)), 'bias': bias}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
return dic_torch
def update(state_dict, new):
for k, v in new.items():
if k not in state_dict:
raise KeyError(k + ' is not found')
if v.shape != state_dict[k].shape:
raise ValueError(f'Shape mismatch: {v.shape} vs {state_dict[k].shape}')
state_dict[k] = v
def discriminator_fill_statedict(statedict, vars, size):
log_size = int(math.log(size, 2))
update(statedict, convert_conv(vars, f'{size}x{size}/FromRGB', 'convs.0'))
conv_i = 1
for i in range(log_size - 2, 0, -1):
reso = 4 * 2 ** i
update(
statedict,
convert_conv(vars, f'{reso}x{reso}/Conv0', f'convs.{conv_i}.conv1'),
)
update(
statedict,
convert_conv(
vars, f'{reso}x{reso}/Conv1_down', f'convs.{conv_i}.conv2', start=1
),
)
update(
statedict,
convert_conv(
vars, f'{reso}x{reso}/Skip', f'convs.{conv_i}.skip', start=1, bias=False
),
)
conv_i += 1
update(statedict, convert_conv(vars, f'4x4/Conv', 'final_conv'))
update(statedict, convert_dense(vars, f'4x4/Dense0', 'final_linear.0'))
update(statedict, convert_dense(vars, f'Output', 'final_linear.1'))
return statedict
def fill_statedict(state_dict, vars, size):
log_size = int(math.log(size, 2))
for i in range(8):
update(state_dict, convert_dense(vars, f'G_mapping/Dense{i}', f'style.{i + 1}'))
update(
state_dict,
{
'input.input': torch.from_numpy(
vars['G_synthesis/4x4/Const/const'].value().eval()
)
},
)
update(state_dict, convert_torgb(vars, 'G_synthesis/4x4/ToRGB', 'to_rgb1'))
for i in range(log_size - 2):
reso = 4 * 2 ** (i + 1)
update(
state_dict,
convert_torgb(vars, f'G_synthesis/{reso}x{reso}/ToRGB', f'to_rgbs.{i}'),
)
update(state_dict, convert_modconv(vars, 'G_synthesis/4x4/Conv', 'conv1'))
conv_i = 0
for i in range(log_size - 2):
reso = 4 * 2 ** (i + 1)
update(
state_dict,
convert_modconv(
vars,
f'G_synthesis/{reso}x{reso}/Conv0_up',
f'convs.{conv_i}',
flip=True,
),
)
update(
state_dict,
convert_modconv(
vars, f'G_synthesis/{reso}x{reso}/Conv1', f'convs.{conv_i + 1}'
),
)
conv_i += 2
for i in range(0, (log_size - 2) * 2 + 1):
update(
state_dict,
{
f'noises.noise_{i}': torch.from_numpy(
vars[f'G_synthesis/noise{i}'].value().eval()
)
},
)
return state_dict
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using PyTorch device', device)
parser = argparse.ArgumentParser()
parser.add_argument('--repo', type=str, required=True)
parser.add_argument('--gen', action='store_true')
parser.add_argument('--disc', action='store_true')
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('path', metavar='PATH')
args = parser.parse_args()
sys.path.append(args.repo)
import dnnlib
from dnnlib import tflib
tflib.init_tf()
with open(args.path, 'rb') as f:
generator, discriminator, g_ema = pickle.load(f)
size = g_ema.output_shape[2]
g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
state_dict = g.state_dict()
state_dict = fill_statedict(state_dict, g_ema.vars, size)
g.load_state_dict(state_dict)
latent_avg = torch.from_numpy(g_ema.vars['dlatent_avg'].value().eval())
ckpt = {'g_ema': state_dict, 'latent_avg': latent_avg}
if args.gen:
g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
g_train_state = g_train.state_dict()
g_train_state = fill_statedict(g_train_state, generator.vars, size)
ckpt['g'] = g_train_state
if args.disc:
disc = Discriminator(size, channel_multiplier=args.channel_multiplier)
d_state = disc.state_dict()
d_state = discriminator_fill_statedict(d_state, discriminator.vars, size)
ckpt['d'] = d_state
name = os.path.splitext(os.path.basename(args.path))[0]
outpath = os.path.join(os.getcwd(), f'{name}.pt')
print('Saving', outpath)
try:
torch.save(ckpt, outpath, _use_new_zipfile_serialization=False)
except TypeError:
torch.save(ckpt, outpath)
print('Generating TF-Torch comparison images')
batch_size = {256: 8, 512: 4, 1024: 2}
n_sample = batch_size.get(size, 4)
g = g.to(device)
z = np.random.RandomState(0).randn(n_sample, 512).astype('float32')
with torch.no_grad():
img_pt, _ = g(
[torch.from_numpy(z).to(device)],
truncation=0.5,
truncation_latent=latent_avg.to(device),
)
img_tf = g_ema.run(z, None, randomize_noise=False)
img_tf = torch.from_numpy(img_tf).to(device)
img_diff = ((img_pt + 1) / 2).clamp(0.0, 1.0) - ((img_tf.to(device) + 1) / 2).clamp(
0.0, 1.0
)
img_concat = torch.cat((img_tf, img_pt, img_diff), dim=0)
utils.save_image(
img_concat, name + '.png', nrow=n_sample, normalize=True, range=(-1, 1)
)
print('Done')