# Copyright 2020 Erik Härkönen. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import torch import numpy as np import re import os import random from pathlib import Path from types import SimpleNamespace from utils import download_ckpt from config import Config from netdissect import proggan, zdataset from . import biggan from . import stylegan from . import stylegan2 from abc import abstractmethod, ABC as AbstractBaseClass from functools import singledispatch class BaseModel(AbstractBaseClass, torch.nn.Module): # Set parameters for identifying model from instance def __init__(self, model_name, class_name): super(BaseModel, self).__init__() self.model_name = model_name self.outclass = class_name # Stop model evaluation as soon as possible after # given layer has been executed, used to speed up # netdissect.InstrumentedModel::retain_layer(). # Validate with tests/partial_forward_test.py # Can use forward() as fallback at the cost of performance. @abstractmethod def partial_forward(self, x, layer_name): pass # Generate batch of latent vectors @abstractmethod def sample_latent(self, n_samples=1, seed=None, truncation=None): pass # Maximum number of latents that can be provided # Typically one for each layer def get_max_latents(self): return 1 # Name of primary latent space # E.g. StyleGAN can alternatively use W def latent_space_name(self): return 'Z' def get_latent_shape(self): return tuple(self.sample_latent(1).shape) def get_latent_dims(self): return np.prod(self.get_latent_shape()) def set_output_class(self, new_class): self.outclass = new_class # Map from typical range [-1, 1] to [0, 1] def forward(self, x): out = self.model.forward(x) return 0.5*(out+1) # Generate images def sample(self, z=None, n_samples=1, seed=None): if z is None: z = self.sample_latent(n_samples, seed=seed) elif isinstance(z, list): z = [torch.tensor(l).to(self.device) if not torch.is_tensor(l) else l for l in z] elif not torch.is_tensor(z): z = torch.tensor(z).to(self.device) img = self.forward(z) return img # For models that use part of latent as conditioning def get_conditional_state(self, z): return None # For models that use part of latent as conditioning def set_conditional_state(self, z, c): return z def named_modules(self, *args, **kwargs): return self.model.named_modules(*args, **kwargs) # PyTorch port of StyleGAN 2 class StyleGAN2(BaseModel): def __init__(self, device, class_name, truncation=1.0, use_w=False): super(StyleGAN2, self).__init__('StyleGAN2', class_name or 'ffhq') self.device = device self.truncation = truncation self.latent_avg = None self.w_primary = use_w # use W as primary latent space? # Image widths configs = { # Converted NVIDIA official 'ffhq': 1024, 'car': 512, 'cat': 256, 'church': 256, 'horse': 256, # Tuomas 'bedrooms': 256, 'kitchen': 256, 'places': 256, 'lookbook': 512 } assert self.outclass in configs, \ f'Invalid StyleGAN2 class {self.outclass}, should be one of [{", ".join(configs.keys())}]' self.resolution = configs[self.outclass] self.name = f'StyleGAN2-{self.outclass}' self.has_latent_residual = True self.load_model() self.set_noise_seed(0) def latent_space_name(self): return 'W' if self.w_primary else 'Z' def use_w(self): self.w_primary = True def use_z(self): self.w_primary = False # URLs created with https://sites.google.com/site/gdocs2direct/ def download_checkpoint(self, outfile): checkpoints = { 'horse': 'https://drive.google.com/uc?export=download&id=18SkqWAkgt0fIwDEf2pqeaenNi4OoCo-0', 'ffhq': 'https://drive.google.com/uc?export=download&id=1FJRwzAkV-XWbxgTwxEmEACvuqF5DsBiV', 'church': 'https://drive.google.com/uc?export=download&id=1HFM694112b_im01JT7wop0faftw9ty5g', 'car': 'https://drive.google.com/uc?export=download&id=1iRoWclWVbDBAy5iXYZrQnKYSbZUqXI6y', 'cat': 'https://drive.google.com/uc?export=download&id=15vJP8GDr0FlRYpE8gD7CdeEz2mXrQMgN', 'places': 'https://drive.google.com/uc?export=download&id=1X8-wIH3aYKjgDZt4KMOtQzN1m4AlCVhm', 'bedrooms': 'https://drive.google.com/uc?export=download&id=1nZTW7mjazs-qPhkmbsOLLA_6qws-eNQu', 'kitchen': 'https://drive.google.com/uc?export=download&id=15dCpnZ1YLAnETAPB0FGmXwdBclbwMEkZ', 'lookbook': 'https://github.com/prathmeshdahikar/FashionGen/releases/download/v1.0/stylegan2_lookbook_512.pt' } url = checkpoints[self.outclass] download_ckpt(url, outfile) def load_model(self): checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') checkpoint = Path(checkpoint_root) / f'stylegan2/stylegan2_{self.outclass}_{self.resolution}.pt' self.model = stylegan2.Generator(self.resolution, 512, 8).to(self.device) if not checkpoint.is_file(): os.makedirs(checkpoint.parent, exist_ok=True) self.download_checkpoint(checkpoint) ckpt = torch.load(checkpoint) self.model.load_state_dict(ckpt['g_ema'], strict=False) self.latent_avg = 0 def sample_latent(self, n_samples=1, seed=None, truncation=None): if seed is None: seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state rng = np.random.RandomState(seed) z = torch.from_numpy( rng.standard_normal(512 * n_samples) .reshape(n_samples, 512)).float().to(self.device) #[N, 512] if self.w_primary: z = self.model.style(z) return z def get_max_latents(self): return self.model.n_latent def set_output_class(self, new_class): if self.outclass != new_class: raise RuntimeError('StyleGAN2: cannot change output class without reloading') def forward(self, x): x = x if isinstance(x, list) else [x] out, _ = self.model(x, noise=self.noise, truncation=self.truncation, truncation_latent=self.latent_avg, input_is_w=self.w_primary) return 0.5*(out+1) def partial_forward(self, x, layer_name): styles = x if isinstance(x, list) else [x] inject_index = None noise = self.noise if not self.w_primary: styles = [self.model.style(s) for s in styles] if len(styles) == 1: # One global latent inject_index = self.model.n_latent latent = self.model.strided_style(styles[0].unsqueeze(1).repeat(1, inject_index, 1)) # [N, 18, 512] elif len(styles) == 2: # Latent mixing with two latents if inject_index is None: inject_index = random.randint(1, self.model.n_latent - 1) latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.model.n_latent - inject_index, 1) latent = self.model.strided_style(torch.cat([latent, latent2], 1)) else: # One latent per layer assert len(styles) == self.model.n_latent, f'Expected {self.model.n_latents} latents, got {len(styles)}' styles = torch.stack(styles, dim=1) # [N, 18, 512] latent = self.model.strided_style(styles) if 'style' in layer_name: return out = self.model.input(latent) if 'input' == layer_name: return out = self.model.conv1(out, latent[:, 0], noise=noise[0]) if 'conv1' in layer_name: return skip = self.model.to_rgb1(out, latent[:, 1]) if 'to_rgb1' in layer_name: return i = 1 noise_i = 1 for conv1, conv2, to_rgb in zip( self.model.convs[::2], self.model.convs[1::2], self.model.to_rgbs ): out = conv1(out, latent[:, i], noise=noise[noise_i]) if f'convs.{i-1}' in layer_name: return out = conv2(out, latent[:, i + 1], noise=noise[noise_i + 1]) if f'convs.{i}' in layer_name: return skip = to_rgb(out, latent[:, i + 2], skip) if f'to_rgbs.{i//2}' in layer_name: return i += 2 noise_i += 2 image = skip raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') def set_noise_seed(self, seed): torch.manual_seed(seed) self.noise = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=self.device)] for i in range(3, self.model.log_size + 1): for _ in range(2): self.noise.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=self.device)) # PyTorch port of StyleGAN 1 class StyleGAN(BaseModel): def __init__(self, device, class_name, truncation=1.0, use_w=False): super(StyleGAN, self).__init__('StyleGAN', class_name or 'ffhq') self.device = device self.w_primary = use_w # is W primary latent space? configs = { # Official 'ffhq': 1024, 'celebahq': 1024, 'bedrooms': 256, 'cars': 512, 'cats': 256, # From https://github.com/justinpinkney/awesome-pretrained-stylegan 'vases': 1024, 'wikiart': 512, 'fireworks': 512, 'abstract': 512, 'anime': 512, 'ukiyo-e': 512, } assert self.outclass in configs, \ f'Invalid StyleGAN class {self.outclass}, should be one of [{", ".join(configs.keys())}]' self.resolution = configs[self.outclass] self.name = f'StyleGAN-{self.outclass}' self.has_latent_residual = True self.load_model() self.set_noise_seed(0) def latent_space_name(self): return 'W' if self.w_primary else 'Z' def use_w(self): self.w_primary = True def use_z(self): self.w_primary = False def load_model(self): checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') checkpoint = Path(checkpoint_root) / f'stylegan/stylegan_{self.outclass}_{self.resolution}.pt' self.model = stylegan.StyleGAN_G(self.resolution).to(self.device) urls_tf = { 'vases': 'https://thisvesseldoesnotexist.s3-us-west-2.amazonaws.com/public/network-snapshot-008980.pkl', 'fireworks': 'https://mega.nz/#!7uBHnACY!quIW-pjdDa7NqnZOYh1z5UemWwPOW6HkYSoJ4usCg9U', 'abstract': 'https://mega.nz/#!vCQyHQZT!zdeOg3VvT4922Z2UfxO51xgAfJD-NAK2nW7H_jMlilU', 'anime': 'https://mega.nz/#!vawjXISI!F7s13yRicxDA3QYqYDL2kjnc2K7Zk3DwCIYETREmBP4', 'ukiyo-e': 'https://drive.google.com/uc?id=1CHbJlci9NhVFifNQb3vCGu6zw4eqzvTd', } urls_torch = { 'celebahq': 'https://drive.google.com/uc?export=download&id=1lGcRwNoXy_uwXkD6sy43aAa-rMHRR7Ad', 'bedrooms': 'https://drive.google.com/uc?export=download&id=1r0_s83-XK2dKlyY3WjNYsfZ5-fnH8QgI', 'ffhq': 'https://drive.google.com/uc?export=download&id=1GcxTcLDPYxQqcQjeHpLUutGzwOlXXcks', 'cars': 'https://drive.google.com/uc?export=download&id=1aaUXHRHjQ9ww91x4mtPZD0w50fsIkXWt', 'cats': 'https://drive.google.com/uc?export=download&id=1JzA5iiS3qPrztVofQAjbb0N4xKdjOOyV', 'wikiart': 'https://drive.google.com/uc?export=download&id=1fN3noa7Rsl9slrDXsgZVDsYFxV0O08Vx', } if not checkpoint.is_file(): os.makedirs(checkpoint.parent, exist_ok=True) if self.outclass in urls_torch: download_ckpt(urls_torch[self.outclass], checkpoint) else: checkpoint_tf = checkpoint.with_suffix('.pkl') if not checkpoint_tf.is_file(): download_ckpt(urls_tf[self.outclass], checkpoint_tf) print('Converting TensorFlow checkpoint to PyTorch') self.model.export_from_tf(checkpoint_tf) self.model.load_weights(checkpoint) def sample_latent(self, n_samples=1, seed=None, truncation=None): if seed is None: seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state rng = np.random.RandomState(seed) noise = torch.from_numpy( rng.standard_normal(512 * n_samples) .reshape(n_samples, 512)).float().to(self.device) #[N, 512] if self.w_primary: noise = self.model._modules['g_mapping'].forward(noise) return noise def get_max_latents(self): return 18 def set_output_class(self, new_class): if self.outclass != new_class: raise RuntimeError('StyleGAN: cannot change output class without reloading') def forward(self, x): out = self.model.forward(x, latent_is_w=self.w_primary) return 0.5*(out+1) # Run model only until given layer def partial_forward(self, x, layer_name): mapping = self.model._modules['g_mapping'] G = self.model._modules['g_synthesis'] trunc = self.model._modules.get('truncation', lambda x : x) if not self.w_primary: x = mapping.forward(x) # handles list inputs if isinstance(x, list): x = torch.stack(x, dim=1) else: x = x.unsqueeze(1).expand(-1, 18, -1) # Whole mapping if 'g_mapping' in layer_name: return x = trunc(x) if layer_name == 'truncation': return # Get names of children def iterate(m, name, seen): children = getattr(m, '_modules', []) if len(children) > 0: for child_name, module in children.items(): seen += iterate(module, f'{name}.{child_name}', seen) return seen else: return [name] # Generator batch_size = x.size(0) for i, (n, m) in enumerate(G.blocks.items()): # InputBlock or GSynthesisBlock if i == 0: r = m(x[:, 2*i:2*i+2]) else: r = m(r, x[:, 2*i:2*i+2]) children = iterate(m, f'g_synthesis.blocks.{n}', []) for c in children: if layer_name in c: # substring return raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') def set_noise_seed(self, seed): G = self.model._modules['g_synthesis'] def for_each_child(this, name, func): children = getattr(this, '_modules', []) for child_name, module in children.items(): for_each_child(module, f'{name}.{child_name}', func) func(this, name) def modify(m, name): if isinstance(m, stylegan.NoiseLayer): H, W = [int(s) for s in name.split('.')[2].split('x')] torch.random.manual_seed(seed) m.noise = torch.randn(1, 1, H, W, device=self.device, dtype=torch.float32) #m.noise = 1.0 # should be [N, 1, H, W], but this also works for_each_child(G, 'g_synthesis', modify) class GANZooModel(BaseModel): def __init__(self, device, model_name): super(GANZooModel, self).__init__(model_name, 'default') self.device = device self.base_model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub', model_name, pretrained=True, useGPU=(device.type == 'cuda')) self.model = self.base_model.netG.to(self.device) self.name = model_name self.has_latent_residual = False def sample_latent(self, n_samples=1, seed=0, truncation=None): # Uses torch.randn noise, _ = self.base_model.buildNoiseData(n_samples) return noise # Don't bother for now def partial_forward(self, x, layer_name): return self.forward(x) def get_conditional_state(self, z): return z[:, -20:] # last 20 = conditioning def set_conditional_state(self, z, c): z[:, -20:] = c return z def forward(self, x): out = self.base_model.test(x) return 0.5*(out+1) class ProGAN(BaseModel): def __init__(self, device, lsun_class=None): super(ProGAN, self).__init__('ProGAN', lsun_class) self.device = device # These are downloaded by GANDissect valid_classes = [ 'bedroom', 'churchoutdoor', 'conferenceroom', 'diningroom', 'kitchen', 'livingroom', 'restaurant' ] assert self.outclass in valid_classes, \ f'Invalid LSUN class {self.outclass}, should be one of {valid_classes}' self.load_model() self.name = f'ProGAN-{self.outclass}' self.has_latent_residual = False def load_model(self): checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') checkpoint = Path(checkpoint_root) / f'progan/{self.outclass}_lsun.pth' if not checkpoint.is_file(): os.makedirs(checkpoint.parent, exist_ok=True) url = f'http://netdissect.csail.mit.edu/data/ganmodel/karras/{self.outclass}_lsun.pth' download_ckpt(url, checkpoint) self.model = proggan.from_pth_file(str(checkpoint.resolve())).to(self.device) def sample_latent(self, n_samples=1, seed=None, truncation=None): if seed is None: seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state noise = zdataset.z_sample_for_model(self.model, n_samples, seed=seed)[...] return noise.to(self.device) def forward(self, x): if isinstance(x, list): assert len(x) == 1, "ProGAN only supports a single global latent" x = x[0] out = self.model.forward(x) return 0.5*(out+1) # Run model only until given layer def partial_forward(self, x, layer_name): assert isinstance(self.model, torch.nn.Sequential), 'Expected sequential model' if isinstance(x, list): assert len(x) == 1, "ProGAN only supports a single global latent" x = x[0] x = x.view(x.shape[0], x.shape[1], 1, 1) for name, module in self.model._modules.items(): # ordered dict x = module(x) if name == layer_name: return raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') class BigGAN(BaseModel): def __init__(self, device, resolution, class_name, truncation=1.0): super(BigGAN, self).__init__(f'BigGAN-{resolution}', class_name) self.device = device self.truncation = truncation self.load_model(f'biggan-deep-{resolution}') self.set_output_class(class_name or 'husky') self.name = f'BigGAN-{resolution}-{self.outclass}-t{self.truncation}' self.has_latent_residual = True # Default implementaiton fails without an internet # connection, even if the model has been cached def load_model(self, name): if name not in biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP: raise RuntimeError('Unknown BigGAN model name', name) checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') model_path = Path(checkpoint_root) / name os.makedirs(model_path, exist_ok=True) model_file = model_path / biggan.model.WEIGHTS_NAME config_file = model_path / biggan.model.CONFIG_NAME model_url = biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP[name] config_url = biggan.model.PRETRAINED_CONFIG_ARCHIVE_MAP[name] for filename, url in ((model_file, model_url), (config_file, config_url)): if not filename.is_file(): print('Downloading', url) with open(filename, 'wb') as f: if url.startswith("s3://"): biggan.s3_get(url, f) else: biggan.http_get(url, f) self.model = biggan.BigGAN.from_pretrained(model_path).to(self.device) def sample_latent(self, n_samples=1, truncation=None, seed=None): if seed is None: seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state noise_vector = biggan.truncated_noise_sample(truncation=truncation or self.truncation, batch_size=n_samples, seed=seed) noise = torch.from_numpy(noise_vector) #[N, 128] return noise.to(self.device) # One extra for gen_z def get_max_latents(self): return len(self.model.config.layers) + 1 def get_conditional_state(self, z): return self.v_class def set_conditional_state(self, z, c): self.v_class = c def is_valid_class(self, class_id): if isinstance(class_id, int): return class_id < 1000 elif isinstance(class_id, str): return biggan.one_hot_from_names([class_id.replace(' ', '_')]) is not None else: raise RuntimeError(f'Unknown class identifier {class_id}') def set_output_class(self, class_id): if isinstance(class_id, int): self.v_class = torch.from_numpy(biggan.one_hot_from_int([class_id])).to(self.device) self.outclass = f'class{class_id}' elif isinstance(class_id, str): self.outclass = class_id.replace(' ', '_') self.v_class = torch.from_numpy(biggan.one_hot_from_names([class_id])).to(self.device) else: raise RuntimeError(f'Unknown class identifier {class_id}') def forward(self, x): # Duplicate along batch dimension if isinstance(x, list): c = self.v_class.repeat(x[0].shape[0], 1) class_vector = len(x)*[c] else: class_vector = self.v_class.repeat(x.shape[0], 1) out = self.model.forward(x, class_vector, self.truncation) # [N, 3, 128, 128], in [-1, 1] return 0.5*(out+1) # Run model only until given layer # Used to speed up PCA sample collection def partial_forward(self, x, layer_name): if layer_name in ['embeddings', 'generator.gen_z']: n_layers = 0 elif 'generator.layers' in layer_name: layer_base = re.match('^generator\.layers\.[0-9]+', layer_name)[0] n_layers = int(layer_base.split('.')[-1]) + 1 else: n_layers = len(self.model.config.layers) if not isinstance(x, list): x = self.model.n_latents*[x] if isinstance(self.v_class, list): labels = [c.repeat(x[0].shape[0], 1) for c in class_label] embed = [self.model.embeddings(l) for l in labels] else: class_label = self.v_class.repeat(x[0].shape[0], 1) embed = len(x)*[self.model.embeddings(class_label)] assert len(x) == self.model.n_latents, f'Expected {self.model.n_latents} latents, got {len(x)}' assert len(embed) == self.model.n_latents, f'Expected {self.model.n_latents} class vectors, got {len(class_label)}' cond_vectors = [torch.cat((z, e), dim=1) for (z, e) in zip(x, embed)] # Generator forward z = self.model.generator.gen_z(cond_vectors[0]) z = z.view(-1, 4, 4, 16 * self.model.generator.config.channel_width) z = z.permute(0, 3, 1, 2).contiguous() cond_idx = 1 for i, layer in enumerate(self.model.generator.layers[:n_layers]): if isinstance(layer, biggan.GenBlock): z = layer(z, cond_vectors[cond_idx], self.truncation) cond_idx += 1 else: z = layer(z) return None # Version 1: separate parameters @singledispatch def get_model(name, output_class, device, **kwargs): # Check if optionally provided existing model can be reused inst = kwargs.get('inst', None) model = kwargs.get('model', None) if inst or model: cached = model or inst.model network_same = (cached.model_name == name) outclass_same = (cached.outclass == output_class) can_change_class = ('BigGAN' in name) if network_same and (outclass_same or can_change_class): cached.set_output_class(output_class) return cached if name == 'DCGAN': import warnings warnings.filterwarnings("ignore", message="nn.functional.tanh is deprecated") model = GANZooModel(device, 'DCGAN') elif name == 'ProGAN': model = ProGAN(device, output_class) elif 'BigGAN' in name: assert '-' in name, 'Please specify BigGAN resolution, e.g. BigGAN-512' model = BigGAN(device, name.split('-')[-1], class_name=output_class) elif name == 'StyleGAN': model = StyleGAN(device, class_name=output_class) elif name == 'StyleGAN2': model = StyleGAN2(device, class_name=output_class) else: raise RuntimeError(f'Unknown model {name}') return model # Version 2: Config object @get_model.register(Config) def _(cfg, device, **kwargs): kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg return get_model(cfg.model, cfg.output_class, device, **kwargs) # Version 1: separate parameters @singledispatch def get_instrumented_model(name, output_class, layers, device, **kwargs): model = get_model(name, output_class, device, **kwargs) model.eval() inst = kwargs.get('inst', None) if inst: inst.close() if not isinstance(layers, list): layers = [layers] # Verify given layer names module_names = [name for (name, _) in model.named_modules()] for layer_name in layers: if not layer_name in module_names: print(f"Layer '{layer_name}' not found in model!") print("Available layers:", '\n'.join(module_names)) raise RuntimeError(f"Unknown layer '{layer_name}''") # Reset StyleGANs to z mode for shape annotation if hasattr(model, 'use_z'): model.use_z() from netdissect.modelconfig import create_instrumented_model inst = create_instrumented_model(SimpleNamespace( model = model, layers = layers, cuda = device.type == 'cuda', gen = True, latent_shape = model.get_latent_shape() )) if kwargs.get('use_w', False): model.use_w() return inst # Version 2: Config object @get_instrumented_model.register(Config) def _(cfg, device, **kwargs): kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg return get_instrumented_model(cfg.model, cfg.output_class, cfg.layer, device, **kwargs)