File size: 2,799 Bytes
8083389 20e2e7b 8083389 84c826d 8083389 91368dd 20e2e7b 91368dd 84c826d 91368dd 20e2e7b 91368dd 20e2e7b 91368dd 20e2e7b 91368dd 20e2e7b 91368dd 20e2e7b 91368dd 20e2e7b 91368dd 84c826d 91368dd 20e2e7b 91368dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')
# Initialize modules
detector = HandDetector(maxHands=1, detectionCon=0.85)
segmentor = SelfiSegmentation()
# Define virtual keyboard layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# Load background images
listImg = os.listdir('model/street') if os.path.exists('model/street') else []
if not listImg:
st.error("Error: 'street' directory is missing or empty. Please add background images.")
st.stop()
else:
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
imgList = [img for img in imgList if img is not None]
indexImg = 0
output_text = ""
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
hands, img = detector.findHands(img, draw=True)
detections = []
if hands:
for hand in hands:
bbox = hand['bbox']
label = "Hand"
score = hand['score']
box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
detections.append(Detection(label=label, score=score, box=box))
result_queue.put(detections)
st.session_state["output_text"] = output_text
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
|