File size: 5,980 Bytes
99e69b6 8083389 3c1f2cc c0c1c4c 8083389 5109a85 8083389 c0c1c4c 8083389 fb324e7 ce9d171 99e69b6 91368dd 5109a85 f68bda2 5109a85 f68bda2 99e69b6 5109a85 99e69b6 5109a85 99e69b6 5109a85 99e69b6 4f1a835 47cd1d4 4f1a835 5109a85 4f1a835 5109a85 4f1a835 2598099 c00a2ab 5109a85 91368dd ce6ce22 99e69b6 fb324e7 5109a85 a078ac1 075c853 99e69b6 075c853 5109a85 7b43476 c0c1c4c 7b43476 c0c1c4c 5109a85 50db096 5109a85 c0c1c4c 50db096 5109a85 c0c1c4c 5109a85 20e2e7b 91368dd aa2a068 91368dd 5109a85 95127e7 99e69b6 95127e7 91368dd 5109a85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.''')
# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Virtual Keyboard Layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
# Global variables
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback with Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# Create the keyboard buttons
buttonList = []
h, w = img.shape[:2]
key_width = int(0.07 * w)
key_height = int(0.09 * h)
font_scale = 0.0045 * w
font_thickness = int(0.009 * h)
for row, key_row in enumerate(keys):
for col, key in enumerate(key_row):
x = int(0.03 * w + col * (key_width + 5))
y = int(0.03 * h + row * (key_height + 5))
buttonList.append(Button([x, y], key, size=[key_width, key_height]))
# Add special buttons for Backspace and Space
buttonList.append(Button([int(0.9 * w), int(0.03 * h)], 'BS', size=[int(0.08 * w), key_height]))
buttonList.append(Button([int(0.2 * w), int(0.4 * h)], 'SPACE', size=[int(0.6 * w), key_height]))
# Draw Keyboard Buttons
for button in buttonList:
x, y = button.pos
bw, bh = button.size
cv2.rectangle(img, (x, y), (x + bw, y + bh), (200, 200, 200), -1)
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (0, 0, 0), font_thickness)
detections = []
if result.multi_hand_landmarks:
for hand_landmarks in result.multi_hand_landmarks:
mp_drawing.draw_landmarks(
img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
h, w, _ = img.shape
x_min, y_min = w, h
x_max, y_max = 0, 0
for lm in hand_landmarks.landmark:
x, y = int(lm.x * w), int(lm.y * h)
x_min, y_min = min(x_min, x), min(y_min, y)
x_max, y_max = max(x_max, x), max(y_max, y)
bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox)))
x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)
distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
click_threshold = 0.2 * np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)
for button in buttonList:
x, y = button.pos
bw, bh = button.size
if x < x8 < x + bw and y < y8 < y + bh:
cv2.rectangle(img, (x, y), (x + bw, y + bh), (0, 255, 160), -1)
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (255, 255, 255), font_thickness)
if distance < click_threshold:
if time.time() - prev_key_time[0] > 2:
prev_key_time[0] = time.time()
if button.text != 'BS' and button.text != 'SPACE':
output_text += button.text # Append key to output text
elif button.text == 'BS':
output_text = output_text[:-1] # Remove last character
else:
output_text += ' ' # Add space
# Draw a background rectangle for the output text
text_x = int(0.05 * w)
text_y = int(0.70 * h)
text_width = int(0.9 * w)
text_height = int(0.1 * h)
cv2.rectangle(img,
(text_x, text_y - text_height),
(text_x + text_width, text_y),
(100, 100, 100),
-1)
# Overlay the output text
cv2.putText(img, output_text, (text_x + int(0.02 * w), text_y - int(0.02 * h)), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 5)
result_queue.put(detections)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
|