File size: 5,980 Bytes
99e69b6
 
 
 
 
 
 
 
 
 
 
8083389
 
3c1f2cc
c0c1c4c
8083389
 
5109a85
8083389
c0c1c4c
8083389
fb324e7
ce9d171
99e69b6
 
 
 
 
 
91368dd
 
5109a85
f68bda2
5109a85
f68bda2
 
 
99e69b6
5109a85
99e69b6
 
 
 
 
 
5109a85
 
99e69b6
 
 
 
 
 
 
5109a85
 
99e69b6
 
 
 
 
 
4f1a835
47cd1d4
4f1a835
5109a85
 
 
 
4f1a835
 
 
5109a85
 
4f1a835
2598099
c00a2ab
5109a85
 
91368dd
ce6ce22
 
99e69b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb324e7
 
 
5109a85
 
a078ac1
075c853
 
99e69b6
075c853
5109a85
 
 
 
7b43476
 
 
 
 
c0c1c4c
7b43476
 
c0c1c4c
5109a85
50db096
5109a85
c0c1c4c
 
50db096
5109a85
 
 
 
c0c1c4c
5109a85
 
20e2e7b
91368dd
aa2a068
91368dd
5109a85
95127e7
99e69b6
 
 
 
95127e7
91368dd
 
5109a85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time

# Logger Setup
logger = logging.getLogger(__name__)

# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.''')

# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils

# Virtual Keyboard Layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
        ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
        ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]


class Button:
    def __init__(self, pos, text, size=[100, 100]):
        self.pos = pos
        self.size = size
        self.text = text


class Detection(NamedTuple):
    label: str
    score: float
    box: np.ndarray


# Global variables
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2

if "output_text" not in st.session_state:
    st.session_state["output_text"] = ""


# Video Frame Callback with Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    global indexImg, output_text

    img = frame.to_ndarray(format="bgr24")
    result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    # Create the keyboard buttons
    buttonList = []
    h, w = img.shape[:2]
    key_width = int(0.07 * w)
    key_height = int(0.09 * h)
    font_scale = 0.0045 * w
    font_thickness = int(0.009 * h)

    for row, key_row in enumerate(keys):
        for col, key in enumerate(key_row):
            x = int(0.03 * w + col * (key_width + 5))
            y = int(0.03 * h + row * (key_height + 5))
            buttonList.append(Button([x, y], key, size=[key_width, key_height]))

    # Add special buttons for Backspace and Space
    buttonList.append(Button([int(0.9 * w), int(0.03 * h)], 'BS', size=[int(0.08 * w), key_height]))
    buttonList.append(Button([int(0.2 * w), int(0.4 * h)], 'SPACE', size=[int(0.6 * w), key_height]))

    # Draw Keyboard Buttons
    for button in buttonList:
        x, y = button.pos
        bw, bh = button.size
        cv2.rectangle(img, (x, y), (x + bw, y + bh), (200, 200, 200), -1)
        cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (0, 0, 0), font_thickness)

    detections = []
    if result.multi_hand_landmarks:
        for hand_landmarks in result.multi_hand_landmarks:
            mp_drawing.draw_landmarks(
                img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
                mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
                mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
            )

            h, w, _ = img.shape
            x_min, y_min = w, h
            x_max, y_max = 0, 0
            for lm in hand_landmarks.landmark:
                x, y = int(lm.x * w), int(lm.y * h)
                x_min, y_min = min(x_min, x), min(y_min, y)
                x_max, y_max = max(x_max, x), max(y_max, y)

            bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
            detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox)))

            x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
            x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)

            distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
            click_threshold = 0.2 * np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)
            
            for button in buttonList:
                x, y = button.pos
                bw, bh = button.size
                if x < x8 < x + bw and y < y8 < y + bh:
                    cv2.rectangle(img, (x, y), (x + bw, y + bh), (0, 255, 160), -1)
                    cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (255, 255, 255), font_thickness)

                    if distance < click_threshold:
                        if time.time() - prev_key_time[0] > 2:
                            prev_key_time[0] = time.time()
                            if button.text != 'BS' and button.text != 'SPACE':
                                output_text += button.text  # Append key to output text 
                            elif button.text == 'BS':
                                output_text = output_text[:-1]  # Remove last character
                            else:
                                output_text += ' '  # Add space

    # Draw a background rectangle for the output text
    text_x = int(0.05 * w)
    text_y = int(0.70 * h)
    text_width = int(0.9 * w)
    text_height = int(0.1 * h)
    cv2.rectangle(img, 
                  (text_x, text_y - text_height), 
                  (text_x + text_width, text_y), 
                  (100, 100, 100), 
                  -1)

    # Overlay the output text
    cv2.putText(img, output_text, (text_x + int(0.02 * w), text_y - int(0.02 * h)), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 5)

    result_queue.put(detections)
    return av.VideoFrame.from_ndarray(img, format="bgr24")


# WebRTC Streamer
webrtc_streamer(
    key="virtual-keyboard",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
    media_stream_constraints={"video": True, "audio": False},
    video_frame_callback=video_frame_callback,
    async_processing=True,
)