File size: 4,732 Bytes
8083389
 
 
 
 
 
 
 
 
ce9d171
8083389
 
 
20e2e7b
 
8083389
 
84c826d
8083389
 
 
 
fb324e7
ce9d171
aa2a068
ce9d171
91368dd
f68bda2
91368dd
 
 
 
f68bda2
 
 
 
 
 
91368dd
 
 
 
 
 
 
fb324e7
91368dd
 
f68bda2
91368dd
 
 
 
fb324e7
91368dd
 
 
 
f68bda2
 
aa2a068
51bb045
fb324e7
5314f2e
 
 
 
 
 
91368dd
 
ce9d171
 
f68bda2
ce9d171
aa2a068
ce9d171
 
 
f68bda2
 
aa2a068
f68bda2
 
ce9d171
f68bda2
 
 
 
 
 
 
 
fb324e7
 
 
ce9d171
fb324e7
f68bda2
fb324e7
f68bda2
 
fb324e7
f68bda2
 
 
 
 
 
 
 
 
20e2e7b
91368dd
 
aa2a068
91368dd
20e2e7b
91368dd
 
 
 
 
 
 
fb324e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time

# Logger Setup
logger = logging.getLogger(__name__)

# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')

# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils

# Virtual Keyboard Layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
        ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
        ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

class Button:
    def __init__(self, pos, text, size=[100, 100]):
        self.pos = pos
        self.size = size
        self.text = text

class Detection(NamedTuple):
    label: str
    score: float
    box: np.ndarray

result_queue: "queue.Queue[List[Detection]]" = queue.Queue()


indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2

if "output_text" not in st.session_state:
    st.session_state["output_text"] = ""

# Video Frame Callback with Your Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    global indexImg, output_text

    img = frame.to_ndarray(format="bgr24")

    # Process frame using MediaPipe
    result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
    for button in buttonList:
        x, y = button.pos
        w, h = button.size
        if x < x8 < x + w and y < y8 < y + h:
            cv2.rectangle(img, button.pos, (x + w, y + h), (0, 255, 160), -1)
            cv2.putText(img, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)

    detections = []
    if result.multi_hand_landmarks:
        for hand_landmarks in result.multi_hand_landmarks:
            # Draw hand landmarks
            mp_drawing.draw_landmarks(
                img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
                mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
                mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
            )

            # Extract bounding box for each hand
            h, w, _ = img.shape
            x_min, y_min = w, h
            x_max, y_max = 0, 0
            for lm in hand_landmarks.landmark:
                x, y = int(lm.x * w), int(lm.y * h)
                x_min, y_min = min(x_min, x), min(y_min, y)
                x_max, y_max = max(x_max, x), max(y_max, y)

            bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
            detections.append(Detection(label="Hand", score=1.0, box=np.array(bbox)))

            # Extract finger tip positions
            x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
            x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)

            
            # Distance Calculation
            distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
            click_threshold = 10


                    # Simulate key press if finger close enough
                    if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
                        if time.time() - prev_key_time[0] > 2:
                            prev_key_time[0] = time.time()
                            if button.text != 'BS' and button.text != 'SPACE':
                                output_text += button.text
                            elif button.text == 'BS':
                                output_text = output_text[:-1]
                            else:
                                output_text += ' '

    result_queue.put(detections)
    st.session_state["output_text"] = output_text
    return av.VideoFrame.from_ndarray(img, format="bgr24")

# WebRTC Streamer
webrtc_streamer(
    key="virtual-keyboard",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
    media_stream_constraints={"video": True, "audio": False},
    video_frame_callback=video_frame_callback,
    async_processing=True,
)