File size: 5,055 Bytes
0ac8362
c286acb
 
 
 
 
0ac8362
 
 
0325cdc
79ac659
c286acb
 
 
 
0ac8362
 
 
94546d9
 
0ac8362
a03b10d
 
 
 
 
 
 
ac79aff
 
 
a03b10d
ac79aff
 
a03b10d
ac79aff
 
a03b10d
ac79aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03b10d
ac79aff
 
 
 
a03b10d
 
ac79aff
 
 
a03b10d
94546d9
5b6aa72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748a99e
 
 
 
 
 
a01685d
 
94546d9
a01685d
8201911
 
 
 
a01685d
 
8201911
a01685d
0ac8362
94546d9
 
 
 
 
 
a03b10d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple

import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import time
import os

logger = logging.getLogger(__name__)

st.title("Interactive Virtual Keyboard with Twilio Integration")
st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")

class Button:
    def __init__(self, pos, text, size=[100, 100]):
        self.pos = pos
        self.size = size
        self.text = text

# Function to process the video frame from the webcam
# def process_video_frame(frame: av.VideoFrame, detector, segmentor, imgList, indexImg, keys, session_state)-> av.VideoFrame:
#     # Convert the frame to a numpy array (BGR format)
#     image = frame.to_ndarray(format="bgr24")
    
#     # Remove background using SelfiSegmentation
#     imgOut = segmentor.removeBG(image, imgList[indexImg])

#     # Detect hands on the background-removed image
#     hands, img = detector.findHands(imgOut, flipType=False)
    
#     # Create a blank canvas for the keyboard
#     keyboard_canvas = np.zeros_like(img)
#     buttonList = []

#     # Create buttons for the virtual keyboard based on the keys list
#     for key in keys[0]:
#         buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
#     for key in keys[1]:
#         buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
#     for key in keys[2]:
#         buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))

#     # Draw the buttons on the keyboard canvas
#     for button in buttonList:
#         x, y = button.pos
#         cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
#         cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)

#     # Handle input and gestures from detected hands
#     if hands:
#         for hand in hands:
#             lmList = hand["lmList"]
#             if lmList:
#                 # Get the coordinates of the index finger tip (landmark 8)
#                 x8, y8 = lmList[8][0], lmList[8][1]
#                 for button in buttonList:
#                     bx, by = button.pos
#                     bw, bh = button.size
#                     # Check if the index finger is over a button
#                     if bx < x8 < bx + bw and by < y8 < by + bh:
#                         # Highlight the button and update the text
#                         cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
#                         cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
#                         # Update the output text in session_state
#                         session_state["output_text"] += button.text

#     # Corrected return: Create a video frame from the ndarray image
#     return av.VideoFrame.from_ndarray(img, format="bgr24")


def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    img = frame.to_ndarray(format="bgr24")
    hands, img = detector.findHands(img, flipType=False)

    # Render hand detection results
    if hands:
        hand = hands[0]
        bbox = hand["bbox"]
        cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)

    return av.VideoFrame.from_ndarray(img, format="bgr24")




# Initialize components
detector = HandDetector(maxHands=1, detectionCon=0.8)
segmentor = SelfiSegmentation()
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
        ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
        ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

listImg = os.listdir('model/street')
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
indexImg = 0

# Shared state for output text
if "output_text" not in st.session_state:
    st.session_state["output_text"] = ""

# Create a thread-safe queue for passing results from callback
result_queue = queue.Queue()

# def video_frame_callback(frame):
#     # Process the frame asynchronously
#     processed_frame = process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, st.session_state)
#     # Put the processed frame into the queue
#     result_queue.put(processed_frame)
#     return processed_frame

webrtc_ctx = webrtc_streamer(
    key="keyboard-demo",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={
        "iceServers": get_ice_servers(),
        "iceTransportPolicy": "relay",
    },
    video_frame_callback=video_frame_callback,
    media_stream_constraints={"video": True, "audio": False},
    async_processing=True,
)

st.markdown("### Instructions")
st.write(
    """
    1. Turn on your webcam using the checkbox above.
    2. Use hand gestures to interact with the virtual keyboard.
    """
)