File size: 14,432 Bytes
bba6cec
eac73a1
 
 
1c81ee4
eac73a1
 
df8ec21
 
 
eac73a1
 
 
 
df8ec21
bba6cec
 
 
 
 
 
 
 
df8ec21
 
 
4a3054c
 
 
 
 
 
eac73a1
bba6cec
df8ec21
bba6cec
 
 
2dd8b34
df8ec21
 
 
 
 
2dd8b34
 
 
d64ad08
2f4a581
506c444
eac73a1
506c444
 
bba6cec
eac73a1
bba6cec
1c15637
bba6cec
 
2dd8b34
506c444
1c15637
 
 
 
 
4a3054c
1c15637
 
 
 
bba6cec
c19a8a5
df8ec21
c19a8a5
2dd8b34
c19a8a5
2dd8b34
c19a8a5
2dd8b34
c19a8a5
2dd8b34
bba6cec
 
4d85c5b
 
 
bba6cec
2dd8b34
 
 
ab370b0
 
 
 
 
 
 
 
 
 
 
 
6f10329
 
c19a8a5
bea8c63
 
 
 
ab370b0
51e8f4c
 
 
 
ab370b0
533774d
ab370b0
533774d
ab370b0
533774d
 
 
 
2dd8b34
c19a8a5
a21e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
8a32864
 
 
 
1e85e0d
6f10329
 
 
ab370b0
 
 
 
2dd8b34
3960910
 
 
2dd8b34
3960910
2dd8b34
3960910
 
c19a8a5
3960910
 
c19a8a5
3960910
2dd8b34
3960910
 
2dd8b34
3960910
 
2dd8b34
1c15637
4d85c5b
506c444
1c15637
506c444
bba6cec
1c15637
2dd8b34
bba6cec
2dd8b34
df8ec21
bba6cec
eac73a1
 
a472ccb
eac73a1
 
a472ccb
0ebb9ed
 
df8ec21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebb9ed
506c444
0ebb9ed
 
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
0ebb9ed
a472ccb
5b6aa72
a472ccb
 
 
 
 
a01685d
a472ccb
 
 
fca4a0b
a472ccb
 
 
 
fca4a0b
a472ccb
 
 
 
 
fca4a0b
a472ccb
 
 
 
6b85062
a472ccb
6b85062
a472ccb
 
 
 
 
 
fca4a0b
a472ccb
 
 
fca4a0b
a472ccb
 
fca4a0b
 
a472ccb
 
 
b07cf96
a472ccb
b07cf96
a472ccb
 
 
 
6b85062
a472ccb
 
 
6b85062
a472ccb
b07cf96
a472ccb
618adcc
 
a472ccb
5fdbc61
89f5596
a472ccb
 
89f5596
a472ccb
 
 
 
 
 
89f5596
a472ccb
89f5596
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f5596
a472ccb
e11ad06
a472ccb
b07cf96
e11ad06
a472ccb
 
e11ad06
a472ccb
 
 
e11ad06
a472ccb
e11ad06
a472ccb
 
 
 
 
 
 
 
 
e11ad06
a472ccb
 
 
 
 
e11ad06
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ad06
 
fca4a0b
a472ccb
 
 
 
 
 
 
 
0ac8362
a472ccb
 
3858190
6b85062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp

import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer

from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers

# Logging setup
logger = logging.getLogger(__name__)

# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")

# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils

class Detection(NamedTuple):
    class_id: int
    label: str
    score: float
    box: np.ndarray


# Angle calculation function
def calculate_angle(a, b, c):
    a = np.array(a)
    b = np.array(b)
    c = np.array(c)
    radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

counterL=0#Counter checks for number of curls
correct=0
incorrect=0
stage='mid'#it checks if we our hand is UP or DOWN

# Detection Queue
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    image = frame.to_ndarray(format="bgr24")
    h, w = image.shape[:2]
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
        results = pose.process(image_rgb)
        landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []

        # Corrected detection logic
        detections = [
            Detection(
                class_id=0,  # Assuming a generic class_id for pose detections
                label="Pose",
                score=0.7,  # Full confidence as pose landmarks were detected
                box=np.array([0, 0, image.shape[1], image.shape[0]])  # Full image as bounding box
            )
        ] if landmarks else []

        if landmarks:
            hipL = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, 
                   landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
            kneeL = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, 
                    landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
            ankleL = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x, 
                     landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
            shoulderL = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, 
                        landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
            footIndexL = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x, 
                    landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]

            # Calculate angles
            angleKneeL = calculate_angle(hipL, kneeL, ankleL)
            angleHipL = calculate_angle(shoulderL, hipL, [hipL[0], 0])
            angleAnkleL = calculate_angle(footIndexL, ankleL, kneeL)
            
            #Visualize of left leg
            cv2.putText(image, str(angleHipL),tuple(np.multiply(angleHipL, [640, 480]).astype(int)),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
            
            # # Squat logic
            # if 80 < angleKneeL < 110 and 29 < angleHipL < 40:
            #     cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
            # else:
            #     if angleHipL < 29:
            #         cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
            #     elif angleHipL > 45:
            #         cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
            #     if angleKneeL < 80:
            #         cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
            #     elif angleKneeL > 110:
            #         cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)


            
            # 1. Bend Forward Warning
            if 10 < angleHipL < 18:
               cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1) 
               cv2.putText(image,f"Bend Forward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(150,120,255),1,cv2.LINE_AA)

            # 2. Lean Backward Warning
            if angleHipL > 45:
               cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
               cv2.putText(image,f"Bend Backward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(80,120,255),1,cv2.LINE_AA)

            # # stage 2

            # # Incorrect movements

            # 3. Knees not low enough
            if 110 < angleKneeL < 130:
               cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
               cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
       
        
            # # 3. Knees not low enough and not completed the squat 
            # if angleKneeL>130 and stage=='mid':
            #    cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
            #    cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
            #    incorrect+=1
            #    stage='up'

            # # 4. Squat too deep
            # if angleKneeL < 80 and stage=='mid':
            #    cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
            #    cv2.putText(image,f"Squat too deep",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
            #    incorrect +=1
            #    stage='up'

            # stage 4 
            if (80 < angleKneeL < 110):
               if (18 < angleHipL < 40):  # Valid "down" position
                   correct+=1
            #        stage='up'


            
        # cv2.putText(image,f"Correct:{correct}",
        #        (400,120),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,0),1,cv2.LINE_AA)
        # cv2.putText(image,f"Incorrect:{incorrect}",
        #        (400,150),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,0),1,cv2.LINE_AA)

    #Render Counter  to our camera screen
    #Setup Status box
        cv2.rectangle(image,(0,0),(500,80),(245,117,16),-1)
    
    #REP data
    
        cv2.putText(image,'Left',(10,12),
               cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1,cv2.LINE_AA)
    
        cv2.putText(image,str(correct),
               (10,60),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),2,cv2.LINE_AA)
    
    #Stage data for left leg
    
        cv2.putText(image,'STAGE',(230,12),
               cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1,cv2.LINE_AA)
    
        cv2.putText(image,stage,
               (230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
            

        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))

    result_queue.put(detections)
    return av.VideoFrame.from_ndarray(image, format="bgr24")



# WebRTC streamer configuration

webrtc_streamer(
    key="squat-detection",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
    media_stream_constraints={"video": True, "audio": False},
    video_frame_callback=video_frame_callback,
    async_processing=True,
)































# import logging
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import os
# import time
# import av
# import queue
# from typing import List, NamedTuple
# from sample_utils.turn import get_ice_servers

# logger = logging.getLogger(__name__)

# # Streamlit settings
# st.set_page_config(page_title="Virtual Keyboard", layout="wide")
# st.title("Interactive Virtual Keyboard")
# st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
# Use 'a' and 'd' from the keyboard to change the background.''')

# # Initialize modules
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()

# # Define virtual keyboard layout
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
#         ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
#         ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

# class Button:
#     def __init__(self, pos, text, size=[100, 100]):
#         self.pos = pos
#         self.size = size
#         self.text = text

# class Detection(NamedTuple):
#     label: str
#     score: float
#     box: np.ndarray

# # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

# listImg = os.listdir('model/street') if os.path.exists('model/street') else []
# if not listImg:
#     st.error("Error: 'street' directory is missing or empty. Please add background images.")
#     st.stop()
# else:
#     imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]

# indexImg = 0
# prev_key_time = [time.time()] * 2
# output_text = ""

# if "output_text" not in st.session_state:
#     st.session_state["output_text"] = ""


# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# #     img = frame.to_ndarray(format="bgr24")
# #     hands, img = detector.findHands(img, flipType=False)

# #     # Render hand detection results

# #     if hands:
# #         hand = hands[0]
# #         bbox = hand["bbox"]
# #         cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)

# #         cv2.putText(img, 'OpenCV', (50,50), font, 
# #                    fontScale, color, thickness, cv2.LINE_AA)
# #         cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)

# #         result_queue.put(hands)
        
# #     return av.VideoFrame.from_ndarray(img, format="bgr24")


# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()


# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     image = frame.to_ndarray(format="bgr24")

#     # Run inference
#     blob = cv2.dnn.blobFromImage(
#         cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
#     )
#     net.setInput(blob)
#     output = net.forward()

#     h, w = image.shape[:2]

#     # Convert the output array into a structured form.
#     output = output.squeeze()  # (1, 1, N, 7) -> (N, 7)
#     output = output[output[:, 2] >= score_threshold]
#     detections = [
#         Detection(
#             class_id=int(detection[1]),
#             label=CLASSES[int(detection[1])],
#             score=float(detection[2]),
#             box=(detection[3:7] * np.array([w, h, w, h])),
#         )
#         for detection in output
#     ]

#     # Render bounding boxes and captions
#     for detection in detections:
#         caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
#         color = COLORS[detection.class_id]
#         xmin, ymin, xmax, ymax = detection.box.astype("int")

#         cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
#         cv2.putText(
#             image,
#             caption,
#             (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
#             cv2.FONT_HERSHEY_SIMPLEX,
#             0.5,
#             color,
#             2,
#         )

#     result_queue.put(detections)

#     return av.VideoFrame.from_ndarray(image, format="bgr24")


# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# #     global indexImg, output_text

# #     img = frame.to_ndarray(format="bgr24")
# #     imgOut = segmentor.removeBG(img, imgList[indexImg])
# #     hands, imgOut = detector.findHands(imgOut, flipType=False)

# #     buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]

# #     detections = []
# #     if hands:
# #         for i, hand in enumerate(hands):
# #             lmList = hand['lmList']
# #             bbox = hand['bbox']
# #             label = "Hand"
# #             score = hand['score']
# #             box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# #             detections.append(Detection(label=label, score=score, box=box))

# #             if lmList:
# #                 x4, y4 = lmList[4][0], lmList[4][1]
# #                 x8, y8 = lmList[8][0], lmList[8][1]
# #                 distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# #                 click_threshold = 10

# #                 for button in buttonList:
# #                     x, y = button.pos
# #                     w, h = button.size
# #                     if x < x8 < x + w and y < y8 < y + h:
# #                         cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# #                         cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)

# #                         if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# #                             if time.time() - prev_key_time[i] > 2:
# #                                 prev_key_time[i] = time.time()
# #                                 if button.text != 'BS' and button.text != 'SPACE':
# #                                     output_text += button.text
# #                                 elif button.text == 'BS':
# #                                     output_text = output_text[:-1]
# #                                 else:
# #                                     output_text += ' '

# #     result_queue.put(detections)
# #     st.session_state["output_text"] = output_text
# #     return av.VideoFrame.from_ndarray(imgOut, format="bgr24")

    

# webrtc_streamer(
#     key="virtual-keyboard",
#     mode=WebRtcMode.SENDRECV,
#     rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
#     media_stream_constraints={"video": True, "audio": False},
#     video_frame_callback=video_frame_callback,
#     async_processing=True,
# )

# st.subheader("Output Text")
# st.text_area("Live Input:", value=st.session_state["output_text"], height=200)