File size: 5,650 Bytes
8083389 ce9d171 8083389 20e2e7b 8083389 84c826d 8083389 fb324e7 ce9d171 aa2a068 ce9d171 91368dd f68bda2 91368dd f68bda2 91368dd fb324e7 91368dd f68bda2 91368dd fb324e7 91368dd f68bda2 aa2a068 51bb045 47cd1d4 b1096cb 47cd1d4 2598099 c00a2ab 91368dd ce9d171 f68bda2 ce9d171 aa2a068 ce9d171 f68bda2 aa2a068 f68bda2 ce9d171 f68bda2 755982c f68bda2 fb324e7 2598099 755982c ce9d171 2598099 f68bda2 755982c 20e2e7b 91368dd aa2a068 91368dd 20e2e7b 91368dd fb324e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')
# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Virtual Keyboard Layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback with Your Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
# Process frame using MediaPipe
result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# Create a blank canvas for drawing the keyboard
# keyboard_canvas = np.zeros_like(img)
buttonList = []
# Define buttons in each row of the virtual keyboard
for key in keys[0]:
buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
for key in keys[1]:
buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
for key in keys[2]:
buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# Add special buttons for Backspace and Space
buttonList.append(Button([90 + 10 * 100, 30], 'BS', size=[125, 100]))
buttonList.append(Button([300, 370], 'SPACE', size=[500, 100]))
for button in buttonList:
x, y = button.pos
w, h = button.size
if x < x8 < x + w and y < y8 < y + h:
cv2.rectangle(img, button.pos, (x + w, y + h), (0, 255, 160), -1)
cv2.putText(img, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
detections = []
if result.multi_hand_landmarks:
for hand_landmarks in result.multi_hand_landmarks:
# Draw hand landmarks
mp_drawing.draw_landmarks(
img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
# Extract bounding box for each hand
h, w, _ = img.shape
x_min, y_min = w, h
x_max, y_max = 0, 0
for lm in hand_landmarks.landmark:
x, y = int(lm.x * w), int(lm.y * h)
x_min, y_min = min(x_min, x), min(y_min, y)
x_max, y_max = max(x_max, x), max(y_max, y)
bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox)))
# Extract finger tip positions
x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)
# # Check for key presses
# for button in buttonList:
# x, y = button.pos
# w, h = button.size
# if x < x8 < x + w and y < y8 < y + h:
# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 160), -1)
# cv2.putText(img, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # Distance Calculation
# distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# click_threshold = 10
# # Simulate key press if finger close enough
# if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# if time.time() - prev_key_time[0] > 2:
# prev_key_time[0] = time.time()
# if button.text != 'BS' and button.text != 'SPACE':
# output_text += button.text
# elif button.text == 'BS':
# output_text = output_text[:-1]
# else:
# output_text += ' '
result_queue.put(detections)
st.session_state["output_text"] = output_text
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
) |