File size: 18,189 Bytes
df8ec21 fca4a0b df8ec21 0ac8362 df8ec21 fca4a0b df8ec21 a472ccb df8ec21 0ebb9ed df8ec21 0ebb9ed df8ec21 e9d2372 bba6cec df8ec21 bba6cec df8ec21 506c444 c324fea df8ec21 bba6cec df8ec21 bba6cec df8ec21 bba6cec df8ec21 c324fea 506c444 1c15637 506c444 bba6cec 1c15637 bba6cec 506c444 1c15637 bba6cec df8ec21 bba6cec 1c15637 bba6cec 506c444 1c15637 506c444 bba6cec 1c15637 c324fea bba6cec df8ec21 bba6cec 506c444 a472ccb bba6cec a472ccb 0ebb9ed df8ec21 0ebb9ed 506c444 0ebb9ed a472ccb 0ebb9ed a472ccb 5b6aa72 a472ccb a01685d a472ccb fca4a0b a472ccb fca4a0b a472ccb fca4a0b a472ccb 6b85062 a472ccb 6b85062 a472ccb fca4a0b a472ccb fca4a0b a472ccb fca4a0b a472ccb b07cf96 a472ccb b07cf96 a472ccb 6b85062 a472ccb 6b85062 a472ccb b07cf96 a472ccb 618adcc a472ccb 5fdbc61 89f5596 a472ccb 89f5596 a472ccb 89f5596 a472ccb 89f5596 a472ccb 89f5596 a472ccb e11ad06 a472ccb b07cf96 e11ad06 a472ccb e11ad06 a472ccb e11ad06 a472ccb e11ad06 a472ccb e11ad06 a472ccb e11ad06 a472ccb e11ad06 fca4a0b a472ccb 0ac8362 a472ccb 3858190 6b85062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os
# logger = logging.getLogger(__name__)
# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0
# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # # Convert the frame to a numpy array (BGR format)
# # image = frame.to_ndarray(format="bgr24")
# # # Remove background using SelfiSegmentation
# # imgOut = segmentor.removeBG(image, imgList[indexImg])
# # # Detect hands on the background-removed image
# # hands, img = detector.findHands(imgOut, flipType=False)
# # # Create a blank canvas for the keyboard
# # keyboard_canvas = np.zeros_like(img)
# # buttonList = []
# # # Create buttons for the virtual keyboard based on the keys list
# # for key in keys[0]:
# # buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# # for key in keys[1]:
# # buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# # for key in keys[2]:
# # buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # # Draw the buttons on the keyboard canvas
# # for button in buttonList:
# # x, y = button.pos
# # cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# # cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # # Handle input and gestures from detected hands
# # if hands:
# # for hand in hands:
# # lmList = hand["lmList"]
# # if lmList:
# # # Get the coordinates of the index finger tip (landmark 8)
# # x8, y8 = lmList[8][0], lmList[8][1]
# # for button in buttonList:
# # bx, by = button.pos
# # bw, bh = button.size
# # # Check if the index finger is over a button
# # if bx < x8 < bx + bw and by < y8 < by + bh:
# # # Highlight the button and update the text
# # cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# # cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # # Update the output text in session_state
# # session_state["output_text"] += button.text
# # # Corrected return: Create a video frame from the ndarray image
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# # Shared state for output text
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# @st.cache_resource # Cache label colors
# def generate_label_colors():
# return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
# COLORS = generate_label_colors()
# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# h, w = image.shape[:2]
# # Process image with MediaPipe Hands
# results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# detections = []
# if results.multi_hand_landmarks:
# for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# # Extract bounding box
# x_min, y_min = 1, 1
# x_max, y_max = 0, 0
# for lm in hand_landmarks.landmark:
# x_min = min(x_min, lm.x)
# y_min = min(y_min, lm.y)
# x_max = max(x_max, lm.x)
# y_max = max(y_max, lm.y)
# # Scale bbox to image size
# box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# # Label and score
# label = hand_class.classification[0].label
# score = hand_class.classification[0].score
# detections.append(Detection(label=label, score=score, box=box))
# # Draw bounding box and label
# color = COLORS[0 if label == "Left" else 1]
# cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
# caption = f"{label}: {round(score * 100, 2)}%"
# cv2.putText(
# image,
# caption,
# (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# # Put results in the queue
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# webrtc_ctx = webrtc_streamer(
# key="keyboard-demo",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={
# "iceServers": get_ice_servers(),
# "iceTransportPolicy": "relay",
# },
# video_frame_callback=video_frame_callback,
# media_stream_constraints={"video": True, "audio": False},
# async_processing=True,
# )
# st.markdown("### Instructions")
# st.write(
# """
# 1. Turn on your webcam using the checkbox above.
# 2. Use hand gestures to interact with the virtual keyboard.
# """
# )
#)
import logging
import cv2
import numpy as np
import mediapipe as mp
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import queue
from typing import List
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Detection Queue
result_queue: queue.Queue[List[Detection]] = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=1.0, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
)
] if landmarks else []
if landmarks:
hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
foot = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]
# Calculate angles
knee_angle = calculate_angle(hip, knee, ankle)
hip_angle = calculate_angle(shoulder, hip, [hip[0], 0])
ankle_angle = calculate_angle(foot, ankle, knee)
# Display key angles
cv2.putText(image, f"Knee: {int(knee_angle)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Hip: {int(hip_angle)}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Ankle: {int(ankle_angle)}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# Squat logic
if 80 < knee_angle < 110 and 29 < hip_angle < 40:
cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
else:
if hip_angle < 29:
cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif hip_angle > 45:
cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
if knee_angle < 80:
cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif knee_angle > 110:
cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
# WebRTC streamer configuration
webrtc_streamer(
key="squat-detection",
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True
)
# import logging
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import os
# import time
# import av
# import queue
# from typing import List, NamedTuple
# from sample_utils.turn import get_ice_servers
# logger = logging.getLogger(__name__)
# # Streamlit settings
# st.set_page_config(page_title="Virtual Keyboard", layout="wide")
# st.title("Interactive Virtual Keyboard")
# st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
# Use 'a' and 'd' from the keyboard to change the background.''')
# # Initialize modules
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()
# # Define virtual keyboard layout
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# listImg = os.listdir('model/street') if os.path.exists('model/street') else []
# if not listImg:
# st.error("Error: 'street' directory is missing or empty. Please add background images.")
# st.stop()
# else:
# imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
# indexImg = 0
# prev_key_time = [time.time()] * 2
# output_text = ""
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # img = frame.to_ndarray(format="bgr24")
# # hands, img = detector.findHands(img, flipType=False)
# # # Render hand detection results
# # if hands:
# # hand = hands[0]
# # bbox = hand["bbox"]
# # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
# # cv2.putText(img, 'OpenCV', (50,50), font,
# # fontScale, color, thickness, cv2.LINE_AA)
# # cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
# # result_queue.put(hands)
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# # Run inference
# blob = cv2.dnn.blobFromImage(
# cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
# )
# net.setInput(blob)
# output = net.forward()
# h, w = image.shape[:2]
# # Convert the output array into a structured form.
# output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
# output = output[output[:, 2] >= score_threshold]
# detections = [
# Detection(
# class_id=int(detection[1]),
# label=CLASSES[int(detection[1])],
# score=float(detection[2]),
# box=(detection[3:7] * np.array([w, h, w, h])),
# )
# for detection in output
# ]
# # Render bounding boxes and captions
# for detection in detections:
# caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
# color = COLORS[detection.class_id]
# xmin, ymin, xmax, ymax = detection.box.astype("int")
# cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
# cv2.putText(
# image,
# caption,
# (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # global indexImg, output_text
# # img = frame.to_ndarray(format="bgr24")
# # imgOut = segmentor.removeBG(img, imgList[indexImg])
# # hands, imgOut = detector.findHands(imgOut, flipType=False)
# # buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
# # detections = []
# # if hands:
# # for i, hand in enumerate(hands):
# # lmList = hand['lmList']
# # bbox = hand['bbox']
# # label = "Hand"
# # score = hand['score']
# # box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# # detections.append(Detection(label=label, score=score, box=box))
# # if lmList:
# # x4, y4 = lmList[4][0], lmList[4][1]
# # x8, y8 = lmList[8][0], lmList[8][1]
# # distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# # click_threshold = 10
# # for button in buttonList:
# # x, y = button.pos
# # w, h = button.size
# # if x < x8 < x + w and y < y8 < y + h:
# # cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# # cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# # if time.time() - prev_key_time[i] > 2:
# # prev_key_time[i] = time.time()
# # if button.text != 'BS' and button.text != 'SPACE':
# # output_text += button.text
# # elif button.text == 'BS':
# # output_text = output_text[:-1]
# # else:
# # output_text += ' '
# # result_queue.put(detections)
# # st.session_state["output_text"] = output_text
# # return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
# webrtc_streamer(
# key="virtual-keyboard",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
# media_stream_constraints={"video": True, "audio": False},
# video_frame_callback=video_frame_callback,
# async_processing=True,
# )
# st.subheader("Output Text")
# st.text_area("Live Input:", value=st.session_state["output_text"], height=200)
|