File size: 18,189 Bytes
df8ec21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca4a0b
df8ec21
 
0ac8362
df8ec21
 
fca4a0b
df8ec21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a472ccb
df8ec21
 
 
 
0ebb9ed
 
df8ec21
 
 
0ebb9ed
df8ec21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d2372
bba6cec
 
df8ec21
 
bba6cec
df8ec21
 
506c444
 
c324fea
df8ec21
bba6cec
 
 
 
 
 
 
 
df8ec21
 
 
bba6cec
df8ec21
bba6cec
 
 
df8ec21
 
 
 
 
 
c324fea
506c444
1c15637
506c444
 
bba6cec
 
1c15637
bba6cec
 
 
506c444
1c15637
 
 
 
 
 
 
 
 
 
bba6cec
df8ec21
 
 
 
 
 
 
 
bba6cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c15637
bba6cec
 
 
506c444
1c15637
506c444
bba6cec
1c15637
c324fea
bba6cec
df8ec21
bba6cec
506c444
a472ccb
bba6cec
a472ccb
0ebb9ed
 
df8ec21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebb9ed
506c444
0ebb9ed
 
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
0ebb9ed
a472ccb
5b6aa72
a472ccb
 
 
 
 
a01685d
a472ccb
 
 
fca4a0b
a472ccb
 
 
 
fca4a0b
a472ccb
 
 
 
 
fca4a0b
a472ccb
 
 
 
6b85062
a472ccb
6b85062
a472ccb
 
 
 
 
 
fca4a0b
a472ccb
 
 
fca4a0b
a472ccb
 
fca4a0b
 
a472ccb
 
 
b07cf96
a472ccb
b07cf96
a472ccb
 
 
 
6b85062
a472ccb
 
 
6b85062
a472ccb
b07cf96
a472ccb
618adcc
 
a472ccb
5fdbc61
89f5596
a472ccb
 
89f5596
a472ccb
 
 
 
 
 
89f5596
a472ccb
89f5596
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f5596
a472ccb
e11ad06
a472ccb
b07cf96
e11ad06
a472ccb
 
e11ad06
a472ccb
 
 
e11ad06
a472ccb
e11ad06
a472ccb
 
 
 
 
 
 
 
 
e11ad06
a472ccb
 
 
 
 
e11ad06
a472ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ad06
 
fca4a0b
a472ccb
 
 
 
 
 
 
 
0ac8362
a472ccb
 
3858190
6b85062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os

# logger = logging.getLogger(__name__)

# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")

# class Button:
#     def __init__(self, pos, text, size=[100, 100]):
#         self.pos = pos
#         self.size = size
#         self.text = text

# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# #         ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# #         ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0


# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# #     # Convert the frame to a numpy array (BGR format)
# #     image = frame.to_ndarray(format="bgr24")
    
# #     # Remove background using SelfiSegmentation
# #     imgOut = segmentor.removeBG(image, imgList[indexImg])

# #     # Detect hands on the background-removed image
# #     hands, img = detector.findHands(imgOut, flipType=False)
    
# #     # Create a blank canvas for the keyboard
# #     keyboard_canvas = np.zeros_like(img)
# #     buttonList = []

# #     # Create buttons for the virtual keyboard based on the keys list
# #     for key in keys[0]:
# #         buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# #     for key in keys[1]:
# #         buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# #     for key in keys[2]:
# #         buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))

# #     # Draw the buttons on the keyboard canvas
# #     for button in buttonList:
# #         x, y = button.pos
# #         cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# #         cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)

# #     # Handle input and gestures from detected hands
# #     if hands:
# #         for hand in hands:
# #             lmList = hand["lmList"]
# #             if lmList:
# #                 # Get the coordinates of the index finger tip (landmark 8)
# #                 x8, y8 = lmList[8][0], lmList[8][1]
# #                 for button in buttonList:
# #                     bx, by = button.pos
# #                     bw, bh = button.size
# #                     # Check if the index finger is over a button
# #                     if bx < x8 < bx + bw and by < y8 < by + bh:
# #                         # Highlight the button and update the text
# #                         cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# #                         cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# #                         # Update the output text in session_state
# #                         session_state["output_text"] += button.text

# #     # Corrected return: Create a video frame from the ndarray image
# #     return av.VideoFrame.from_ndarray(img, format="bgr24")






# # Shared state for output text
# if "output_text" not in st.session_state:
#     st.session_state["output_text"] = ""

# class Detection(NamedTuple):
#     label: str
#     score: float
#     box: np.ndarray


# @st.cache_resource  # Cache label colors
# def generate_label_colors():
#     return np.random.uniform(0, 255, size=(2, 3))  # Two classes: Left and Right Hand


# COLORS = generate_label_colors()

# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)

# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     image = frame.to_ndarray(format="bgr24")
#     h, w = image.shape[:2]

#     # Process image with MediaPipe Hands
#     results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

#     detections = []
#     if results.multi_hand_landmarks:
#         for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
#             # Extract bounding box
#             x_min, y_min = 1, 1
#             x_max, y_max = 0, 0
#             for lm in hand_landmarks.landmark:
#                 x_min = min(x_min, lm.x)
#                 y_min = min(y_min, lm.y)
#                 x_max = max(x_max, lm.x)
#                 y_max = max(y_max, lm.y)

#             # Scale bbox to image size
#             box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")

#             # Label and score
#             label = hand_class.classification[0].label
#             score = hand_class.classification[0].score

#             detections.append(Detection(label=label, score=score, box=box))

#             # Draw bounding box and label
#             color = COLORS[0 if label == "Left" else 1]
#             cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
#             caption = f"{label}: {round(score * 100, 2)}%"
#             cv2.putText(
#                 image,
#                 caption,
#                 (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
#                 cv2.FONT_HERSHEY_SIMPLEX,
#                 0.5,
#                 color,
#                 2,
#             )

#     # Put results in the queue
#     result_queue.put(detections)

#     return av.VideoFrame.from_ndarray(image, format="bgr24")



# webrtc_ctx = webrtc_streamer(
#     key="keyboard-demo",
#     mode=WebRtcMode.SENDRECV,
#     rtc_configuration={
#         "iceServers": get_ice_servers(),
#         "iceTransportPolicy": "relay",
#     },
#     video_frame_callback=video_frame_callback,
#     media_stream_constraints={"video": True, "audio": False},
#     async_processing=True,
# )


# st.markdown("### Instructions")
# st.write(
#     """
#     1. Turn on your webcam using the checkbox above.
#     2. Use hand gestures to interact with the virtual keyboard.
#     """
# ) 

#)

import logging
import cv2
import numpy as np
import mediapipe as mp
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import queue
from typing import List

# Logging setup
logger = logging.getLogger(__name__)

# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")

# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils

# Angle calculation function
def calculate_angle(a, b, c):
    a = np.array(a)
    b = np.array(b)
    c = np.array(c)
    radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle


# Detection Queue
result_queue: queue.Queue[List[Detection]] = queue.Queue()

def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    image = frame.to_ndarray(format="bgr24")
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
        results = pose.process(image_rgb)
        landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []

        # Corrected detection logic
        detections = [
            Detection(
                class_id=0,  # Assuming a generic class_id for pose detections
                label="Pose",
                score=1.0,  # Full confidence as pose landmarks were detected
                box=np.array([0, 0, image.shape[1], image.shape[0]])  # Full image as bounding box
            )
        ] if landmarks else []

        if landmarks:
            hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, 
                   landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
            knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, 
                    landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
            ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x, 
                     landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
            shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, 
                        landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
            foot = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x, 
                    landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]

            # Calculate angles
            knee_angle = calculate_angle(hip, knee, ankle)
            hip_angle = calculate_angle(shoulder, hip, [hip[0], 0])
            ankle_angle = calculate_angle(foot, ankle, knee)
            
            # Display key angles
            cv2.putText(image, f"Knee: {int(knee_angle)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            cv2.putText(image, f"Hip: {int(hip_angle)}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            cv2.putText(image, f"Ankle: {int(ankle_angle)}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            
            # Squat logic
            if 80 < knee_angle < 110 and 29 < hip_angle < 40:
                cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
            else:
                if hip_angle < 29:
                    cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                elif hip_angle > 45:
                    cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                if knee_angle < 80:
                    cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                elif knee_angle > 110:
                    cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)

        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
                                  mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),
                                  mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))

    result_queue.put(detections)
    return av.VideoFrame.from_ndarray(image, format="bgr24")



# WebRTC streamer configuration
webrtc_streamer(
    key="squat-detection",
    video_frame_callback=video_frame_callback,
    media_stream_constraints={"video": True, "audio": False},
    async_processing=True
)































# import logging
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import os
# import time
# import av
# import queue
# from typing import List, NamedTuple
# from sample_utils.turn import get_ice_servers

# logger = logging.getLogger(__name__)

# # Streamlit settings
# st.set_page_config(page_title="Virtual Keyboard", layout="wide")
# st.title("Interactive Virtual Keyboard")
# st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
# Use 'a' and 'd' from the keyboard to change the background.''')

# # Initialize modules
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()

# # Define virtual keyboard layout
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
#         ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
#         ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

# class Button:
#     def __init__(self, pos, text, size=[100, 100]):
#         self.pos = pos
#         self.size = size
#         self.text = text

# class Detection(NamedTuple):
#     label: str
#     score: float
#     box: np.ndarray

# # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

# listImg = os.listdir('model/street') if os.path.exists('model/street') else []
# if not listImg:
#     st.error("Error: 'street' directory is missing or empty. Please add background images.")
#     st.stop()
# else:
#     imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]

# indexImg = 0
# prev_key_time = [time.time()] * 2
# output_text = ""

# if "output_text" not in st.session_state:
#     st.session_state["output_text"] = ""


# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# #     img = frame.to_ndarray(format="bgr24")
# #     hands, img = detector.findHands(img, flipType=False)

# #     # Render hand detection results

# #     if hands:
# #         hand = hands[0]
# #         bbox = hand["bbox"]
# #         cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)

# #         cv2.putText(img, 'OpenCV', (50,50), font, 
# #                    fontScale, color, thickness, cv2.LINE_AA)
# #         cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)

# #         result_queue.put(hands)
        
# #     return av.VideoFrame.from_ndarray(img, format="bgr24")


# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()


# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     image = frame.to_ndarray(format="bgr24")

#     # Run inference
#     blob = cv2.dnn.blobFromImage(
#         cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
#     )
#     net.setInput(blob)
#     output = net.forward()

#     h, w = image.shape[:2]

#     # Convert the output array into a structured form.
#     output = output.squeeze()  # (1, 1, N, 7) -> (N, 7)
#     output = output[output[:, 2] >= score_threshold]
#     detections = [
#         Detection(
#             class_id=int(detection[1]),
#             label=CLASSES[int(detection[1])],
#             score=float(detection[2]),
#             box=(detection[3:7] * np.array([w, h, w, h])),
#         )
#         for detection in output
#     ]

#     # Render bounding boxes and captions
#     for detection in detections:
#         caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
#         color = COLORS[detection.class_id]
#         xmin, ymin, xmax, ymax = detection.box.astype("int")

#         cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
#         cv2.putText(
#             image,
#             caption,
#             (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
#             cv2.FONT_HERSHEY_SIMPLEX,
#             0.5,
#             color,
#             2,
#         )

#     result_queue.put(detections)

#     return av.VideoFrame.from_ndarray(image, format="bgr24")


# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# #     global indexImg, output_text

# #     img = frame.to_ndarray(format="bgr24")
# #     imgOut = segmentor.removeBG(img, imgList[indexImg])
# #     hands, imgOut = detector.findHands(imgOut, flipType=False)

# #     buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]

# #     detections = []
# #     if hands:
# #         for i, hand in enumerate(hands):
# #             lmList = hand['lmList']
# #             bbox = hand['bbox']
# #             label = "Hand"
# #             score = hand['score']
# #             box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# #             detections.append(Detection(label=label, score=score, box=box))

# #             if lmList:
# #                 x4, y4 = lmList[4][0], lmList[4][1]
# #                 x8, y8 = lmList[8][0], lmList[8][1]
# #                 distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# #                 click_threshold = 10

# #                 for button in buttonList:
# #                     x, y = button.pos
# #                     w, h = button.size
# #                     if x < x8 < x + w and y < y8 < y + h:
# #                         cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# #                         cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)

# #                         if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# #                             if time.time() - prev_key_time[i] > 2:
# #                                 prev_key_time[i] = time.time()
# #                                 if button.text != 'BS' and button.text != 'SPACE':
# #                                     output_text += button.text
# #                                 elif button.text == 'BS':
# #                                     output_text = output_text[:-1]
# #                                 else:
# #                                     output_text += ' '

# #     result_queue.put(detections)
# #     st.session_state["output_text"] = output_text
# #     return av.VideoFrame.from_ndarray(imgOut, format="bgr24")

    

# webrtc_streamer(
#     key="virtual-keyboard",
#     mode=WebRtcMode.SENDRECV,
#     rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
#     media_stream_constraints={"video": True, "audio": False},
#     video_frame_callback=video_frame_callback,
#     async_processing=True,
# )

# st.subheader("Output Text")
# st.text_area("Live Input:", value=st.session_state["output_text"], height=200)