Pratyush101's picture
Update app.py
1661849 verified
raw
history blame
7.46 kB
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.''')
# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Improved keyboard layout with better styling
keys = [
["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]
]
# Enhanced colors and styling
COLORS = {
'KEY_IDLE': (75, 75, 75), # Darker gray for idle keys
'KEY_HOVER': (100, 100, 255), # Blue highlight for hover
'KEY_PRESS': (50, 200, 50), # Green for pressed keys
'TEXT_NORMAL': (255, 255, 255), # White text
'TEXT_PRESS': (0, 0, 0), # Black text when pressed
'OUTPUT_BG': (45, 45, 45), # Dark gray for output background
}
# Modified Button class with hover state
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
self.is_hover = False
self.is_pressed = False
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
# Global variables
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback with Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# Create the keyboard buttons
buttonList = []
h, w = img.shape[:2]
key_width = int(0.07 * w)
key_height = int(0.09 * h)
font_scale = 0.0045 * w
font_thickness = int(0.009 * h)
for row, key_row in enumerate(keys):
for col, key in enumerate(key_row):
x = int(0.03 * w + col * (key_width + 5))
y = int(0.03 * h + row * (key_height + 5))
buttonList.append(Button([x, y], key, size=[key_width, key_height]))
# Add special buttons for Backspace and Space
buttonList.append(Button([int(0.85 * w), int(0.03 * h)], 'BS', size=[int(0.12 * w), key_height]))
buttonList.append(Button([int(0.2 * w), int(0.4 * h)], 'SPACE', size=[int(0.55 * w), key_height]))
# Draw Keyboard Buttons
for button in buttonList:
x, y = button.pos
bw, bh = button.size
# Draw key background with rounded corners
if button.is_pressed:
color = COLORS['KEY_PRESS']
text_color = COLORS['TEXT_PRESS']
elif button.is_hover:
color = COLORS['KEY_HOVER']
text_color = COLORS['TEXT_NORMAL']
else:
color = COLORS['KEY_IDLE']
text_color = COLORS['TEXT_NORMAL']
# Draw rounded rectangle
cv2.rectangle(img, (x, y), (x + bw, y + bh), color, -1, cv2.LINE_AA)
cv2.rectangle(img, (x, y), (x + bw, y + bh), (100, 100, 100), 1, cv2.LINE_AA)
# Center text
text_size = cv2.getTextSize(button.text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)[0]
text_x = x + (bw - text_size[0]) // 2
text_y = y + (bh + text_size[1]) // 2
cv2.putText(img, button.text, (text_x, text_y),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, text_color, font_thickness)
detections = []
if result.multi_hand_landmarks:
for hand_landmarks in result.multi_hand_landmarks:
mp_drawing.draw_landmarks(
img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
h, w, _ = img.shape
x_min, y_min = w, h
x_max, y_max = 0, 0
for lm in hand_landmarks.landmark:
x, y = int(lm.x * w), int(lm.y * h)
x_min, y_min = min(x_min, x), min(y_min, y)
x_max, y_max = max(x_max, x), max(y_max, y)
bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox)))
x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)
distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
click_threshold = 0.2 * np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)
for button in buttonList:
x, y = button.pos
bw, bh = button.size
if x < x8 < x + bw and y < y8 < y + bh:
# cv2.rectangle(img, (x, y), (x + bw, y + bh), color, -1,, cv2.LINE_AA)
# cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, text_color, font_thickness)
if distance < click_threshold:
if time.time() - prev_key_time[0] > 2:
prev_key_time[0] = time.time()
if button.text != 'BS' and button.text != 'SPACE':
output_text += button.text # Append key to output text
elif button.text == 'BS':
output_text = output_text[:-1] # Remove last character
else:
output_text += ' ' # Add space
# Improved output display
output_bg_height = int(0.15 * h)
output_y = int(0.8 * h)
# Draw output background with rounded corners
cv2.rectangle(img,
(int(0.05 * w), output_y - output_bg_height),
(int(0.95 * w), output_y),
COLORS['OUTPUT_BG'], -1, cv2.LINE_AA)
# Add text with better positioning
text_size = cv2.getTextSize(output_text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)[0]
text_x = int(0.07 * w)
text_y = output_y - output_bg_height//2 + text_size[1]//2
cv2.putText(img, output_text, (text_x, text_y),
cv2.FONT_HERSHEY_SIMPLEX, 1, COLORS['TEXT_NORMAL'], 2)
result_queue.put(detections)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)