Pratyush101's picture
Update app.py
17fe806 verified
raw
history blame
4.75 kB
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.set_page_config(page_title="AI Squat Detection", page_icon="🏋️", layout="wide")
st.markdown(
"""<style>
.status-box {
background: #f7f7f7;
padding: 15px;
border-radius: 8px;
box-shadow: 2px 2px 5px rgba(0,0,0,0.1);
margin-bottom: 20px;
font-size: 18px;
}
.title {
color: #2E86C1;
font-size: 32px;
font-weight: bold;
text-align: center;
margin-bottom: 10px;
}
.info {
text-align: center;
font-size: 18px;
margin-bottom: 20px;
color: #333;
}
</style>""", unsafe_allow_html=True)
st.markdown('<div class="title">AI Squat Detection</div>', unsafe_allow_html=True)
st.markdown('<div class="info">Use your webcam for real-time squat detection.</div>', unsafe_allow_html=True)
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
class Detection(NamedTuple):
class_id: int
label: str
score: float
box: np.ndarray
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Detection Queue
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global counterL, correct, incorrect, stage
if 'stage' not in globals():
stage = 'up'
correct = 0
incorrect = 0
image = frame.to_ndarray(format="bgr24")
h, w = image.shape[:2]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=0.5, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
) if landmarks else []
if landmarks:
hipL = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
kneeL = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankleL = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulderL = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
# Calculate angles
angleKneeL = calculate_angle(hipL, kneeL, ankleL)
angleHipL = calculate_angle(shoulderL, hipL, [hipL[0], 0])
if angleKneeL > 110 and stage == 'down':
stage = 'up'
if 18 < angleHipL < 40:
correct += 1
if 80 < angleKneeL < 110 and stage == 'up':
stage = 'down'
# Overlay feedback messages
overlay_text = f"Correct: {correct} | Stage: {stage}"
cv2.rectangle(image, (0, 0), (500, 80), (245, 117, 16), -1)
cv2.putText(image, overlay_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
webrtc_streamer(
key="squat-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)