Pratyush101's picture
Update app.py
1c81ee4 verified
raw
history blame
18.7 kB
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os
# logger = logging.getLogger(__name__)
# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0
# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # # Convert the frame to a numpy array (BGR format)
# # image = frame.to_ndarray(format="bgr24")
# # # Remove background using SelfiSegmentation
# # imgOut = segmentor.removeBG(image, imgList[indexImg])
# # # Detect hands on the background-removed image
# # hands, img = detector.findHands(imgOut, flipType=False)
# # # Create a blank canvas for the keyboard
# # keyboard_canvas = np.zeros_like(img)
# # buttonList = []
# # # Create buttons for the virtual keyboard based on the keys list
# # for key in keys[0]:
# # buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# # for key in keys[1]:
# # buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# # for key in keys[2]:
# # buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # # Draw the buttons on the keyboard canvas
# # for button in buttonList:
# # x, y = button.pos
# # cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# # cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # # Handle input and gestures from detected hands
# # if hands:
# # for hand in hands:
# # lmList = hand["lmList"]
# # if lmList:
# # # Get the coordinates of the index finger tip (landmark 8)
# # x8, y8 = lmList[8][0], lmList[8][1]
# # for button in buttonList:
# # bx, by = button.pos
# # bw, bh = button.size
# # # Check if the index finger is over a button
# # if bx < x8 < bx + bw and by < y8 < by + bh:
# # # Highlight the button and update the text
# # cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# # cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # # Update the output text in session_state
# # session_state["output_text"] += button.text
# # # Corrected return: Create a video frame from the ndarray image
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# # Shared state for output text
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# @st.cache_resource # Cache label colors
# def generate_label_colors():
# return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
# COLORS = generate_label_colors()
# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# h, w = image.shape[:2]
# # Process image with MediaPipe Hands
# results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# detections = []
# if results.multi_hand_landmarks:
# for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# # Extract bounding box
# x_min, y_min = 1, 1
# x_max, y_max = 0, 0
# for lm in hand_landmarks.landmark:
# x_min = min(x_min, lm.x)
# y_min = min(y_min, lm.y)
# x_max = max(x_max, lm.x)
# y_max = max(y_max, lm.y)
# # Scale bbox to image size
# box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# # Label and score
# label = hand_class.classification[0].label
# score = hand_class.classification[0].score
# detections.append(Detection(label=label, score=score, box=box))
# # Draw bounding box and label
# color = COLORS[0 if label == "Left" else 1]
# cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
# caption = f"{label}: {round(score * 100, 2)}%"
# cv2.putText(
# image,
# caption,
# (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# # Put results in the queue
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# webrtc_ctx = webrtc_streamer(
# key="keyboard-demo",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={
# "iceServers": get_ice_servers(),
# "iceTransportPolicy": "relay",
# },
# video_frame_callback=video_frame_callback,
# media_stream_constraints={"video": True, "audio": False},
# async_processing=True,
# )
# st.markdown("### Instructions")
# st.write(
# """
# 1. Turn on your webcam using the checkbox above.
# 2. Use hand gestures to interact with the virtual keyboard.
# """
# )
#)
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
class Detection(NamedTuple):
class_id: int
label: str
score: float
box: np.ndarray
@st.cache_resource # type: ignore
def generate_label_colors():
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
COLORS = generate_label_colors()
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Detection Queue
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
h, w = image.shape[:2]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=0.7, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
)
] if landmarks else []
if landmarks:
hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
foot = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]
# Calculate angles
knee_angle = calculate_angle(hip, knee, ankle)
hip_angle = calculate_angle(shoulder, hip, [hip[0], 0])
ankle_angle = calculate_angle(foot, ankle, knee)
# Display key angles
cv2.putText(image, f"Knee: {int(knee_angle)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Hip: {int(hip_angle)}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Ankle: {int(ankle_angle)}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# Squat logic
if 80 < knee_angle < 110 and 29 < hip_angle < 40:
cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
else:
if hip_angle < 29:
cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif hip_angle > 45:
cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
if knee_angle < 80:
cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif knee_angle > 110:
cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
# WebRTC streamer configuration
webrtc_streamer(
key="squat-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
# import logging
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import os
# import time
# import av
# import queue
# from typing import List, NamedTuple
# from sample_utils.turn import get_ice_servers
# logger = logging.getLogger(__name__)
# # Streamlit settings
# st.set_page_config(page_title="Virtual Keyboard", layout="wide")
# st.title("Interactive Virtual Keyboard")
# st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
# Use 'a' and 'd' from the keyboard to change the background.''')
# # Initialize modules
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()
# # Define virtual keyboard layout
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# listImg = os.listdir('model/street') if os.path.exists('model/street') else []
# if not listImg:
# st.error("Error: 'street' directory is missing or empty. Please add background images.")
# st.stop()
# else:
# imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
# indexImg = 0
# prev_key_time = [time.time()] * 2
# output_text = ""
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # img = frame.to_ndarray(format="bgr24")
# # hands, img = detector.findHands(img, flipType=False)
# # # Render hand detection results
# # if hands:
# # hand = hands[0]
# # bbox = hand["bbox"]
# # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
# # cv2.putText(img, 'OpenCV', (50,50), font,
# # fontScale, color, thickness, cv2.LINE_AA)
# # cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
# # result_queue.put(hands)
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# # Run inference
# blob = cv2.dnn.blobFromImage(
# cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
# )
# net.setInput(blob)
# output = net.forward()
# h, w = image.shape[:2]
# # Convert the output array into a structured form.
# output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
# output = output[output[:, 2] >= score_threshold]
# detections = [
# Detection(
# class_id=int(detection[1]),
# label=CLASSES[int(detection[1])],
# score=float(detection[2]),
# box=(detection[3:7] * np.array([w, h, w, h])),
# )
# for detection in output
# ]
# # Render bounding boxes and captions
# for detection in detections:
# caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
# color = COLORS[detection.class_id]
# xmin, ymin, xmax, ymax = detection.box.astype("int")
# cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
# cv2.putText(
# image,
# caption,
# (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # global indexImg, output_text
# # img = frame.to_ndarray(format="bgr24")
# # imgOut = segmentor.removeBG(img, imgList[indexImg])
# # hands, imgOut = detector.findHands(imgOut, flipType=False)
# # buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
# # detections = []
# # if hands:
# # for i, hand in enumerate(hands):
# # lmList = hand['lmList']
# # bbox = hand['bbox']
# # label = "Hand"
# # score = hand['score']
# # box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# # detections.append(Detection(label=label, score=score, box=box))
# # if lmList:
# # x4, y4 = lmList[4][0], lmList[4][1]
# # x8, y8 = lmList[8][0], lmList[8][1]
# # distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# # click_threshold = 10
# # for button in buttonList:
# # x, y = button.pos
# # w, h = button.size
# # if x < x8 < x + w and y < y8 < y + h:
# # cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# # cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# # if time.time() - prev_key_time[i] > 2:
# # prev_key_time[i] = time.time()
# # if button.text != 'BS' and button.text != 'SPACE':
# # output_text += button.text
# # elif button.text == 'BS':
# # output_text = output_text[:-1]
# # else:
# # output_text += ' '
# # result_queue.put(detections)
# # st.session_state["output_text"] = output_text
# # return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
# webrtc_streamer(
# key="virtual-keyboard",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
# media_stream_constraints={"video": True, "audio": False},
# video_frame_callback=video_frame_callback,
# async_processing=True,
# )
# st.subheader("Output Text")
# st.text_area("Live Input:", value=st.session_state["output_text"], height=200)