Pratyush101's picture
Update app.py
7b77011 verified
raw
history blame
6.49 kB
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import time
import os
logger = logging.getLogger(__name__)
st.title("Interactive Virtual Keyboard with Twilio Integration")
st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
# Initialize components
detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# listImg = os.listdir('model/street')
# imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# indexImg = 0
# # Function to process the video frame from the webcam
# def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # Convert the frame to a numpy array (BGR format)
# image = frame.to_ndarray(format="bgr24")
# # Remove background using SelfiSegmentation
# imgOut = segmentor.removeBG(image, imgList[indexImg])
# # Detect hands on the background-removed image
# hands, img = detector.findHands(imgOut, flipType=False)
# # Create a blank canvas for the keyboard
# keyboard_canvas = np.zeros_like(img)
# buttonList = []
# # Create buttons for the virtual keyboard based on the keys list
# for key in keys[0]:
# buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# for key in keys[1]:
# buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# for key in keys[2]:
# buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # Draw the buttons on the keyboard canvas
# for button in buttonList:
# x, y = button.pos
# cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # Handle input and gestures from detected hands
# if hands:
# for hand in hands:
# lmList = hand["lmList"]
# if lmList:
# # Get the coordinates of the index finger tip (landmark 8)
# x8, y8 = lmList[8][0], lmList[8][1]
# for button in buttonList:
# bx, by = button.pos
# bw, bh = button.size
# # Check if the index finger is over a button
# if bx < x8 < bx + bw and by < y8 < by + bh:
# # Highlight the button and update the text
# cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # Update the output text in session_state
# session_state["output_text"] += button.text
# # Corrected return: Create a video frame from the ndarray image
# return av.VideoFrame.from_ndarray(img, format="bgr24")
# Shared state for output text
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
@st.cache_resource # Cache label colors
def generate_label_colors():
return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
COLORS = generate_label_colors()
# Initialize MediaPipe Hands
mp_hands = mp.solutions.hands
detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# Session-specific caching
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# Hand detection callback
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
h, w = image.shape[:2]
# Process image with MediaPipe Hands
results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
detections = []
if results.multi_hand_landmarks:
for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# Extract bounding box
x_min, y_min = 1, 1
x_max, y_max = 0, 0
for lm in hand_landmarks.landmark:
x_min = min(x_min, lm.x)
y_min = min(y_min, lm.y)
x_max = max(x_max, lm.x)
y_max = max(y_max, lm.y)
# Scale bbox to image size
box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# Label and score
label = hand_class.classification[0].label
score = hand_class.classification[0].score
detections.append(Detection(label=label, score=score, box=box))
# Draw bounding box and label
color = COLORS[0 if label == "Left" else 1]
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
caption = f"{label}: {round(score * 100, 2)}%"
cv2.putText(
image,
caption,
(box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
color,
2,
)
# Put results in the queue
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="keyboard-demo",
mode=WebRtcMode.SENDRECV,
rtc_configuration={
"iceServers": get_ice_servers(),
"iceTransportPolicy": "relay",
},
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
st.markdown("### Instructions")
st.write(
"""
1. Turn on your webcam using the checkbox above.
2. Use hand gestures to interact with the virtual keyboard.
"""
)