Pratyush101's picture
Update app.py
a03b10d verified
raw
history blame
4.53 kB
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import time
import os
logger = logging.getLogger(__name__)
st.title("Interactive Virtual Keyboard with Twilio Integration")
st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
# Function to process the video frame from the webcam
def process_video_frame(frame: av.VideoFrame, detector, segmentor, imgList, indexImg, keys, session_state)-> av.VideoFrame:
# Convert the frame to a numpy array (BGR format)
image = frame.to_ndarray(format="bgr24")
# Remove background using SelfiSegmentation
imgOut = segmentor.removeBG(image, imgList[indexImg])
# Detect hands on the background-removed image
hands, img = detector.findHands(imgOut, flipType=False)
# Create a blank canvas for the keyboard
keyboard_canvas = np.zeros_like(img)
buttonList = []
# Create buttons for the virtual keyboard based on the keys list
for key in keys[0]:
buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
for key in keys[1]:
buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
for key in keys[2]:
buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# Draw the buttons on the keyboard canvas
for button in buttonList:
x, y = button.pos
cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# Handle input and gestures from detected hands
if hands:
for hand in hands:
lmList = hand["lmList"]
if lmList:
# Get the coordinates of the index finger tip (landmark 8)
x8, y8 = lmList[8][0], lmList[8][1]
for button in buttonList:
bx, by = button.pos
bw, bh = button.size
# Check if the index finger is over a button
if bx < x8 < bx + bw and by < y8 < by + bh:
# Highlight the button and update the text
cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# Update the output text in session_state
session_state["output_text"] += button.text
# Corrected return: Create a video frame from the ndarray image
return av.VideoFrame.from_ndarray(img, format="bgr24")
# Initialize components
detector = HandDetector(maxHands=1, detectionCon=0.8)
segmentor = SelfiSegmentation()
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
listImg = os.listdir('model/street')
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
indexImg = 0
# Shared state for output text
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Create a thread-safe queue for passing results from callback
result_queue = queue.Queue()
def video_frame_callback(frame):
# Process the frame asynchronously
processed_frame = process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, st.session_state)
# Put the processed frame into the queue
result_queue.put(processed_frame)
return processed_frame
webrtc_ctx = webrtc_streamer(
key="keyboard-demo",
mode=WebRtcMode.SENDRECV,
rtc_configuration={
"iceServers": get_ice_servers(),
"iceTransportPolicy": "relay",
},
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
st.markdown("### Instructions")
st.write(
"""
1. Turn on your webcam using the checkbox above.
2. Use hand gestures to interact with the virtual keyboard.
"""
)