Pratyush101's picture
Update app.py
c0c1c4c verified
raw
history blame
6.19 kB
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.''')
# Initialize MediaPipe and Background Segmentor
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Virtual Keyboard Layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def _init_(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
indexImg = 0
output_text = ""
prev_key_time = [time.time()] * 2
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback with Your Logic
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# Create the keyboard buttons
buttonList = []
h, w = img.shape[:2]
key_width = int(0.08 * w) # Increased button width
key_height = int(0.1 * h) # Increased button height
font_scale = 0.005 * w # Adjusted font size
font_thickness = int(0.01 * h) # Adjusted font thickness
for row, key_row in enumerate(keys):
for col, key in enumerate(key_row):
x = int(0.05 * w + col * (key_width + 10)) # Added extra spacing between keys
y = int(0.05 * h + row * (key_height + 10)) # Added extra spacing between keys
buttonList.append(Button([x, y], key, size=[key_width, key_height]))
# Add special buttons for Backspace and Space
buttonList.append(Button([int(0.85 * w), int(0.05 * h)], 'BS', size=[int(0.1 * w), key_height]))
buttonList.append(Button([int(0.2 * w), int(0.35 * h)], 'SPACE', size=[int(0.6 * w), key_height]))
# Draw Keyboard Buttons
for button in buttonList:
x, y = button.pos
bw, bh = button.size
cv2.rectangle(img, (x, y), (x + bw, y + bh), (200, 200, 200), -1)
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (0, 0, 0), font_thickness)
detections = []
if result.multi_hand_landmarks:
for hand_landmarks in result.multi_hand_landmarks:
mp_drawing.draw_landmarks(
img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
h, w, _ = img.shape
x_min, y_min = w, h
x_max, y_max = 0, 0
for lm in hand_landmarks.landmark:
x, y = int(lm.x * w), int(lm.y * h)
x_min, y_min = min(x_min, x), min(y_min, y)
x_max, y_max = max(x_max, x), max(y_max, y)
bbox = [x_min, y_min, x_max - x_min, y_max - y_min]
detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox)))
x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h)
x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h)
distance = np.sqrt((x8 - x4) * 2 + (y8 - y4) * 2)
click_threshold = 0.2 * np.sqrt(bbox[2] * 2 + bbox[3] * 2)
for button in buttonList:
x, y = button.pos
bw, bh = button.size
if x < x8 < x + bw and y < y8 < y + bh:
cv2.rectangle(img, (x, y), (x + bw, y + bh), (0, 255, 160), -1)
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (255, 255, 255), font_thickness)
if distance < click_threshold:
if time.time() - prev_key_time[0] > 2:
prev_key_time[0] = time.time()
if button.text != 'BS' and button.text != 'SPACE':
output_text += button.text # Append key to output text
elif button.text == 'BS':
output_text = output_text[:-1] # Remove last character
else:
output_text += ' ' # Add space
# Position and dimensions for the output text box
text_x = int(0.05 * w)
text_y = int(0.75 * h)
text_width = int(0.9 * w)
text_height = int(0.1 * h)
# Draw the background for output text box
cv2.rectangle(img,
(text_x, text_y - text_height),
(text_x + text_width, text_y),
(50, 50, 50), # Dark background for the text area
-1)
# Display the output text in white with larger font
cv2.putText(img, output_text, (text_x + 20, text_y - 20), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 5)
result_queue.put(detections)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)