|
import logging |
|
import queue |
|
from typing import List, NamedTuple |
|
import av |
|
import cv2 |
|
import numpy as np |
|
import streamlit as st |
|
from streamlit_webrtc import WebRtcMode, webrtc_streamer |
|
from sample_utils.turn import get_ice_servers |
|
import mediapipe as mp |
|
import os |
|
import time |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋") |
|
st.title("Interactive Virtual Keyboard") |
|
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.''') |
|
|
|
|
|
mp_hands = mp.solutions.hands |
|
hands = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.5) |
|
mp_drawing = mp.solutions.drawing_utils |
|
|
|
|
|
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"], |
|
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"], |
|
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]] |
|
|
|
class Button: |
|
def _init_(self, pos, text, size=[100, 100]): |
|
self.pos = pos |
|
self.size = size |
|
self.text = text |
|
|
|
class Detection(NamedTuple): |
|
label: str |
|
score: float |
|
box: np.ndarray |
|
|
|
result_queue: "queue.Queue[List[Detection]]" = queue.Queue() |
|
|
|
indexImg = 0 |
|
output_text = "" |
|
prev_key_time = [time.time()] * 2 |
|
|
|
if "output_text" not in st.session_state: |
|
st.session_state["output_text"] = "" |
|
|
|
|
|
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
global indexImg, output_text |
|
|
|
img = frame.to_ndarray(format="bgr24") |
|
result = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
buttonList = [] |
|
h, w = img.shape[:2] |
|
key_width = int(0.08 * w) |
|
key_height = int(0.1 * h) |
|
font_scale = 0.005 * w |
|
font_thickness = int(0.01 * h) |
|
|
|
for row, key_row in enumerate(keys): |
|
for col, key in enumerate(key_row): |
|
x = int(0.05 * w + col * (key_width + 10)) |
|
y = int(0.05 * h + row * (key_height + 10)) |
|
buttonList.append(Button([x, y], key, size=[key_width, key_height])) |
|
|
|
|
|
buttonList.append(Button([int(0.85 * w), int(0.05 * h)], 'BS', size=[int(0.1 * w), key_height])) |
|
buttonList.append(Button([int(0.2 * w), int(0.35 * h)], 'SPACE', size=[int(0.6 * w), key_height])) |
|
|
|
|
|
for button in buttonList: |
|
x, y = button.pos |
|
bw, bh = button.size |
|
cv2.rectangle(img, (x, y), (x + bw, y + bh), (200, 200, 200), -1) |
|
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (0, 0, 0), font_thickness) |
|
|
|
detections = [] |
|
if result.multi_hand_landmarks: |
|
for hand_landmarks in result.multi_hand_landmarks: |
|
mp_drawing.draw_landmarks( |
|
img, hand_landmarks, mp_hands.HAND_CONNECTIONS, |
|
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4), |
|
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2) |
|
) |
|
|
|
h, w, _ = img.shape |
|
x_min, y_min = w, h |
|
x_max, y_max = 0, 0 |
|
for lm in hand_landmarks.landmark: |
|
x, y = int(lm.x * w), int(lm.y * h) |
|
x_min, y_min = min(x_min, x), min(y_min, y) |
|
x_max, y_max = max(x_max, x), max(y_max, y) |
|
|
|
bbox = [x_min, y_min, x_max - x_min, y_max - y_min] |
|
detections.append(Detection(label="Hand", score=0.5, box=np.array(bbox))) |
|
|
|
x4, y4 = int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].y * h) |
|
x8, y8 = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) |
|
|
|
distance = np.sqrt((x8 - x4) * 2 + (y8 - y4) * 2) |
|
click_threshold = 0.2 * np.sqrt(bbox[2] * 2 + bbox[3] * 2) |
|
|
|
for button in buttonList: |
|
x, y = button.pos |
|
bw, bh = button.size |
|
if x < x8 < x + bw and y < y8 < y + bh: |
|
cv2.rectangle(img, (x, y), (x + bw, y + bh), (0, 255, 160), -1) |
|
cv2.putText(img, button.text, (x + int(0.2 * bw), y + int(0.7 * bh)), cv2.FONT_HERSHEY_PLAIN, font_scale, (255, 255, 255), font_thickness) |
|
if distance < click_threshold: |
|
if time.time() - prev_key_time[0] > 2: |
|
prev_key_time[0] = time.time() |
|
if button.text != 'BS' and button.text != 'SPACE': |
|
output_text += button.text |
|
elif button.text == 'BS': |
|
output_text = output_text[:-1] |
|
else: |
|
output_text += ' ' |
|
|
|
|
|
text_x = int(0.05 * w) |
|
text_y = int(0.75 * h) |
|
text_width = int(0.9 * w) |
|
text_height = int(0.1 * h) |
|
|
|
|
|
cv2.rectangle(img, |
|
(text_x, text_y - text_height), |
|
(text_x + text_width, text_y), |
|
(50, 50, 50), |
|
-1) |
|
|
|
|
|
cv2.putText(img, output_text, (text_x + 20, text_y - 20), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 5) |
|
|
|
result_queue.put(detections) |
|
|
|
return av.VideoFrame.from_ndarray(img, format="bgr24") |
|
|
|
|
|
webrtc_streamer( |
|
key="virtual-keyboard", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"}, |
|
media_stream_constraints={"video": True, "audio": False}, |
|
video_frame_callback=video_frame_callback, |
|
async_processing=True, |
|
) |