Pratyush101 commited on
Commit
495fa7e
·
verified ·
1 Parent(s): 470932b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -257
app.py CHANGED
@@ -42,19 +42,21 @@ def calculate_angle(a, b, c):
42
  angle = 360 - angle
43
  return angle
44
 
45
- # counterL=0#Counter checks for number of curls
46
- # correct=0
47
- # incorrect=0
48
- # stage='mid'#it checks if we our hand is UP or DOWN
49
 
50
  # Detection Queue
51
  result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
52
 
53
  def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
54
- counterL=0#Counter checks for number of curls
55
- correct=0
56
- incorrect=0
57
- stage='mid'#it checks if we our hand is UP or DOWN
 
 
 
58
  image = frame.to_ndarray(format="bgr24")
59
  h, w = image.shape[:2]
60
  image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
@@ -92,40 +94,40 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
92
 
93
  #Visualize of left leg
94
  cv2.putText(image, str(angleHipL),tuple(np.multiply(angleHipL, [640, 480]).astype(int)),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
95
-
96
- # # Squat logic
97
- # if 80 < angleKneeL < 110 and 29 < angleHipL < 40:
98
- # cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
99
- # else:
100
- # if angleHipL < 29:
101
- # cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
102
- # elif angleHipL > 45:
103
- # cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
104
- # if angleKneeL < 80:
105
- # cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
106
- # elif angleKneeL > 110:
107
- # cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
108
 
109
 
110
-
111
- # 1. Bend Forward Warning
 
 
 
 
 
 
 
 
 
 
112
  if 10 < angleHipL < 18:
113
  cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
114
  cv2.putText(image,f"Bend Forward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(150,120,255),1,cv2.LINE_AA)
115
-
116
- # 2. Lean Backward Warning
117
  if angleHipL > 45:
118
  cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
119
  cv2.putText(image,f"Bend Backward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(80,120,255),1,cv2.LINE_AA)
 
120
 
121
- # # stage 2
122
 
123
- # # Incorrect movements
124
 
125
- # 3. Knees not low enough
126
- if 110 < angleKneeL < 130:
127
- cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
128
- cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
 
 
 
 
 
129
 
130
 
131
  # # 3. Knees not low enough and not completed the squat
@@ -142,11 +144,13 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
142
  # incorrect +=1
143
  # stage='up'
144
 
145
- # stage 4
146
- if (80 < angleKneeL < 110):
147
- # if (18 < angleHipL < 40): # Valid "down" position
148
- correct+=1
149
- # stage='up'
 
 
150
 
151
 
152
 
@@ -193,224 +197,3 @@ webrtc_streamer(
193
  video_frame_callback=video_frame_callback,
194
  async_processing=True,
195
  )
196
-
197
-
198
-
199
-
200
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
- # import logging
228
- # import cv2
229
- # import numpy as np
230
- # import streamlit as st
231
- # from streamlit_webrtc import WebRtcMode, webrtc_streamer
232
- # from cvzone.HandTrackingModule import HandDetector
233
- # from cvzone.SelfiSegmentationModule import SelfiSegmentation
234
- # import os
235
- # import time
236
- # import av
237
- # import queue
238
- # from typing import List, NamedTuple
239
- # from sample_utils.turn import get_ice_servers
240
-
241
- # logger = logging.getLogger(__name__)
242
-
243
- # # Streamlit settings
244
- # st.set_page_config(page_title="Virtual Keyboard", layout="wide")
245
- # st.title("Interactive Virtual Keyboard")
246
- # st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
247
- # Use 'a' and 'd' from the keyboard to change the background.''')
248
-
249
- # # Initialize modules
250
- # detector = HandDetector(maxHands=1, detectionCon=0.8)
251
- # segmentor = SelfiSegmentation()
252
-
253
- # # Define virtual keyboard layout
254
- # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
255
- # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
256
- # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
257
-
258
- # class Button:
259
- # def __init__(self, pos, text, size=[100, 100]):
260
- # self.pos = pos
261
- # self.size = size
262
- # self.text = text
263
-
264
- # class Detection(NamedTuple):
265
- # label: str
266
- # score: float
267
- # box: np.ndarray
268
-
269
- # # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
270
-
271
- # listImg = os.listdir('model/street') if os.path.exists('model/street') else []
272
- # if not listImg:
273
- # st.error("Error: 'street' directory is missing or empty. Please add background images.")
274
- # st.stop()
275
- # else:
276
- # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
277
-
278
- # indexImg = 0
279
- # prev_key_time = [time.time()] * 2
280
- # output_text = ""
281
-
282
- # if "output_text" not in st.session_state:
283
- # st.session_state["output_text"] = ""
284
-
285
-
286
- # # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
287
- # # img = frame.to_ndarray(format="bgr24")
288
- # # hands, img = detector.findHands(img, flipType=False)
289
-
290
- # # # Render hand detection results
291
-
292
- # # if hands:
293
- # # hand = hands[0]
294
- # # bbox = hand["bbox"]
295
- # # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
296
-
297
- # # cv2.putText(img, 'OpenCV', (50,50), font,
298
- # # fontScale, color, thickness, cv2.LINE_AA)
299
- # # cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
300
-
301
- # # result_queue.put(hands)
302
-
303
- # # return av.VideoFrame.from_ndarray(img, format="bgr24")
304
-
305
-
306
- # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
307
-
308
-
309
- # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
310
- # image = frame.to_ndarray(format="bgr24")
311
-
312
- # # Run inference
313
- # blob = cv2.dnn.blobFromImage(
314
- # cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
315
- # )
316
- # net.setInput(blob)
317
- # output = net.forward()
318
-
319
- # h, w = image.shape[:2]
320
-
321
- # # Convert the output array into a structured form.
322
- # output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
323
- # output = output[output[:, 2] >= score_threshold]
324
- # detections = [
325
- # Detection(
326
- # class_id=int(detection[1]),
327
- # label=CLASSES[int(detection[1])],
328
- # score=float(detection[2]),
329
- # box=(detection[3:7] * np.array([w, h, w, h])),
330
- # )
331
- # for detection in output
332
- # ]
333
-
334
- # # Render bounding boxes and captions
335
- # for detection in detections:
336
- # caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
337
- # color = COLORS[detection.class_id]
338
- # xmin, ymin, xmax, ymax = detection.box.astype("int")
339
-
340
- # cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
341
- # cv2.putText(
342
- # image,
343
- # caption,
344
- # (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
345
- # cv2.FONT_HERSHEY_SIMPLEX,
346
- # 0.5,
347
- # color,
348
- # 2,
349
- # )
350
-
351
- # result_queue.put(detections)
352
-
353
- # return av.VideoFrame.from_ndarray(image, format="bgr24")
354
-
355
-
356
- # # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
357
- # # global indexImg, output_text
358
-
359
- # # img = frame.to_ndarray(format="bgr24")
360
- # # imgOut = segmentor.removeBG(img, imgList[indexImg])
361
- # # hands, imgOut = detector.findHands(imgOut, flipType=False)
362
-
363
- # # buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
364
-
365
- # # detections = []
366
- # # if hands:
367
- # # for i, hand in enumerate(hands):
368
- # # lmList = hand['lmList']
369
- # # bbox = hand['bbox']
370
- # # label = "Hand"
371
- # # score = hand['score']
372
- # # box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
373
- # # detections.append(Detection(label=label, score=score, box=box))
374
-
375
- # # if lmList:
376
- # # x4, y4 = lmList[4][0], lmList[4][1]
377
- # # x8, y8 = lmList[8][0], lmList[8][1]
378
- # # distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
379
- # # click_threshold = 10
380
-
381
- # # for button in buttonList:
382
- # # x, y = button.pos
383
- # # w, h = button.size
384
- # # if x < x8 < x + w and y < y8 < y + h:
385
- # # cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
386
- # # cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
387
-
388
- # # if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
389
- # # if time.time() - prev_key_time[i] > 2:
390
- # # prev_key_time[i] = time.time()
391
- # # if button.text != 'BS' and button.text != 'SPACE':
392
- # # output_text += button.text
393
- # # elif button.text == 'BS':
394
- # # output_text = output_text[:-1]
395
- # # else:
396
- # # output_text += ' '
397
-
398
- # # result_queue.put(detections)
399
- # # st.session_state["output_text"] = output_text
400
- # # return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
401
-
402
-
403
-
404
- # webrtc_streamer(
405
- # key="virtual-keyboard",
406
- # mode=WebRtcMode.SENDRECV,
407
- # rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
408
- # media_stream_constraints={"video": True, "audio": False},
409
- # video_frame_callback=video_frame_callback,
410
- # async_processing=True,
411
- # )
412
-
413
- # st.subheader("Output Text")
414
- # st.text_area("Live Input:", value=st.session_state["output_text"], height=200)
415
-
416
-
 
42
  angle = 360 - angle
43
  return angle
44
 
45
+ counterL=0#Counter checks for number of curls
46
+ correct=0
47
+ incorrect=0
 
48
 
49
  # Detection Queue
50
  result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
51
 
52
  def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
53
+ global counterL, correct, incorrect, stage #The change made
54
+ # Initialize stage if not defined
55
+ if 'stage' not in globals():
56
+ stage = 'up'
57
+ correct = 0
58
+ incorrect = 0
59
+
60
  image = frame.to_ndarray(format="bgr24")
61
  h, w = image.shape[:2]
62
  image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
94
 
95
  #Visualize of left leg
96
  cv2.putText(image, str(angleHipL),tuple(np.multiply(angleHipL, [640, 480]).astype(int)),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
 
99
+
100
+
101
+ # Update squat stage and count correct reps
102
+ if angleKneeL > 110 and stage == 'down':
103
+ stage = 'up'
104
+ if 18 < angleHipL < 40:
105
+ correct += 1
106
+
107
+ if 80 < angleKneeL < 110 and stage == 'up':
108
+ stage = 'down'
109
+
110
+ # Display feedback messages
111
  if 10 < angleHipL < 18:
112
  cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
113
  cv2.putText(image,f"Bend Forward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(150,120,255),1,cv2.LINE_AA)
114
+
 
115
  if angleHipL > 45:
116
  cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
117
  cv2.putText(image,f"Bend Backward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(80,120,255),1,cv2.LINE_AA)
118
+
119
 
 
120
 
 
121
 
122
+
123
+ # # # stage 2
124
+
125
+ # # # Incorrect movements
126
+
127
+ # # 3. Knees not low enough
128
+ # if 110 < angleKneeL < 130:
129
+ # cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
130
+ # cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
131
 
132
 
133
  # # 3. Knees not low enough and not completed the squat
 
144
  # incorrect +=1
145
  # stage='up'
146
 
147
+ # # stage 4
148
+ # if (80 < angleKneeL < 110) and stage=='mid':
149
+ # if (18 < angleHipL < 40): # Valid "down" position
150
+ # correct+=1
151
+ # stage='up'
152
+ # if (angleKneeL>110):
153
+ # stage='mid'
154
 
155
 
156
 
 
197
  video_frame_callback=video_frame_callback,
198
  async_processing=True,
199
  )