Update app.py
Browse files
app.py
CHANGED
@@ -25,8 +25,20 @@ class Button:
|
|
25 |
self.size = size
|
26 |
self.text = text
|
27 |
|
28 |
-
#
|
29 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# # Convert the frame to a numpy array (BGR format)
|
31 |
# image = frame.to_ndarray(format="bgr24")
|
32 |
|
@@ -77,90 +89,21 @@ class Button:
|
|
77 |
|
78 |
|
79 |
|
80 |
-
# Initialize components
|
81 |
-
detector = HandDetector(maxHands=1, detectionCon=0.8)
|
82 |
-
segmentor = SelfiSegmentation()
|
83 |
-
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
|
84 |
-
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
|
85 |
-
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
|
86 |
-
|
87 |
-
listImg = os.listdir('model/street')
|
88 |
-
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
|
89 |
-
indexImg = 0
|
90 |
-
|
91 |
-
|
92 |
-
# Function to process the video frame from the webcam
|
93 |
-
def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
|
94 |
-
# Convert the frame to a numpy array (BGR format)
|
95 |
-
image = frame.to_ndarray(format="bgr24")
|
96 |
-
|
97 |
-
# Remove background using SelfiSegmentation
|
98 |
-
imgOut = segmentor.removeBG(image, imgList[indexImg])
|
99 |
-
|
100 |
-
# Detect hands on the background-removed image
|
101 |
-
hands, img = detector.findHands(imgOut, flipType=False)
|
102 |
-
|
103 |
-
# Create a blank canvas for the keyboard
|
104 |
-
keyboard_canvas = np.zeros_like(img)
|
105 |
-
buttonList = []
|
106 |
-
|
107 |
-
# Create buttons for the virtual keyboard based on the keys list
|
108 |
-
for key in keys[0]:
|
109 |
-
buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
|
110 |
-
for key in keys[1]:
|
111 |
-
buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
|
112 |
-
for key in keys[2]:
|
113 |
-
buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
|
114 |
-
|
115 |
-
# Draw the buttons on the keyboard canvas
|
116 |
-
for button in buttonList:
|
117 |
-
x, y = button.pos
|
118 |
-
cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
|
119 |
-
cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
|
120 |
-
|
121 |
-
# Handle input and gestures from detected hands
|
122 |
-
if hands:
|
123 |
-
for hand in hands:
|
124 |
-
lmList = hand["lmList"]
|
125 |
-
if lmList:
|
126 |
-
# Get the coordinates of the index finger tip (landmark 8)
|
127 |
-
x8, y8 = lmList[8][0], lmList[8][1]
|
128 |
-
for button in buttonList:
|
129 |
-
bx, by = button.pos
|
130 |
-
bw, bh = button.size
|
131 |
-
# Check if the index finger is over a button
|
132 |
-
if bx < x8 < bx + bw and by < y8 < by + bh:
|
133 |
-
# Highlight the button and update the text
|
134 |
-
cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
|
135 |
-
cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
|
136 |
-
# Update the output text in session_state
|
137 |
-
session_state["output_text"] += button.text
|
138 |
-
|
139 |
-
# Corrected return: Create a video frame from the ndarray image
|
140 |
-
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
141 |
-
|
142 |
|
143 |
|
144 |
|
145 |
|
|
|
|
|
|
|
146 |
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
154 |
-
# img = frame.to_ndarray(format="bgr24")
|
155 |
-
# hands, img = detector.findHands(img, flipType=False)
|
156 |
-
|
157 |
-
# # Render hand detection results
|
158 |
-
# if hands:
|
159 |
-
# hand = hands[0]
|
160 |
-
# bbox = hand["bbox"]
|
161 |
-
# cv2.rectangle(img, (bbox[0], bbox[1]), (255, 0, 0), 2)
|
162 |
-
|
163 |
-
# return av.VideoFrame.from_ndarray(img, format="bgr24")
|
164 |
|
165 |
# Shared state for output text
|
166 |
if "output_text" not in st.session_state:
|
@@ -169,21 +112,23 @@ if "output_text" not in st.session_state:
|
|
169 |
# Create a thread-safe queue for passing results from callback
|
170 |
result_queue = queue.Queue()
|
171 |
|
172 |
-
def video_frame_callback(frame):
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
|
179 |
webrtc_ctx = webrtc_streamer(
|
180 |
key="keyboard-demo",
|
181 |
mode=WebRtcMode.SENDRECV,
|
182 |
rtc_configuration={
|
183 |
"iceServers": get_ice_servers(),
|
|
|
184 |
},
|
185 |
video_frame_callback=video_frame_callback,
|
186 |
media_stream_constraints={"video": True, "audio": False},
|
|
|
187 |
)
|
188 |
|
189 |
st.markdown("### Instructions")
|
|
|
25 |
self.size = size
|
26 |
self.text = text
|
27 |
|
28 |
+
# # Initialize components
|
29 |
+
# detector = HandDetector(maxHands=1, detectionCon=0.8)
|
30 |
+
# segmentor = SelfiSegmentation()
|
31 |
+
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
|
32 |
+
# ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
|
33 |
+
# ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
|
34 |
+
|
35 |
+
# listImg = os.listdir('model/street')
|
36 |
+
# imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
|
37 |
+
# indexImg = 0
|
38 |
+
|
39 |
+
|
40 |
+
# # Function to process the video frame from the webcam
|
41 |
+
# def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
|
42 |
# # Convert the frame to a numpy array (BGR format)
|
43 |
# image = frame.to_ndarray(format="bgr24")
|
44 |
|
|
|
89 |
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
|
95 |
|
96 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
97 |
+
img = frame.to_ndarray(format="bgr24")
|
98 |
+
hands, img = detector.findHands(img, flipType=False)
|
99 |
|
100 |
+
# Render hand detection results
|
101 |
+
if hands:
|
102 |
+
hand = hands[0]
|
103 |
+
bbox = hand["bbox"]
|
104 |
+
cv2.rectangle(img, (bbox[0], bbox[1]), (255, 0, 0), 2)
|
105 |
|
106 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Shared state for output text
|
109 |
if "output_text" not in st.session_state:
|
|
|
112 |
# Create a thread-safe queue for passing results from callback
|
113 |
result_queue = queue.Queue()
|
114 |
|
115 |
+
# def video_frame_callback(frame):
|
116 |
+
# # Process the frame asynchronously
|
117 |
+
# processed_frame = process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, st.session_state)
|
118 |
+
# # Put the processed frame into the queue
|
119 |
+
# result_queue.put(processed_frame)
|
120 |
+
# return processed_frame
|
121 |
|
122 |
webrtc_ctx = webrtc_streamer(
|
123 |
key="keyboard-demo",
|
124 |
mode=WebRtcMode.SENDRECV,
|
125 |
rtc_configuration={
|
126 |
"iceServers": get_ice_servers(),
|
127 |
+
"iceTransportPolicy": "relay",
|
128 |
},
|
129 |
video_frame_callback=video_frame_callback,
|
130 |
media_stream_constraints={"video": True, "audio": False},
|
131 |
+
async_processing=True,
|
132 |
)
|
133 |
|
134 |
st.markdown("### Instructions")
|