import logging import queue from typing import List, NamedTuple import av import cv2 import numpy as np import streamlit as st from streamlit_webrtc import WebRtcMode, webrtc_streamer from sample_utils.turn import get_ice_servers import mediapipe as mp import os import time # Logger Setup logger = logging.getLogger(__name__) # Streamlit settings st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️") st.title("Interactive Virtual Keyboard") st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard. Use 'a' and 'd' from the keyboard to change the background.''') # Initialize MediaPipe Hand Detector mp_hands = mp.solutions.hands hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7) mp_drawing = mp.solutions.drawing_utils # Define virtual keyboard layout keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"], ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"], ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]] class Detection(NamedTuple): label: str score: float box: np.ndarray result_queue: "queue.Queue[List[Detection]]" = queue.Queue() # Load background images listImg = os.listdir('model/street') if os.path.exists('model/street') else [] if not listImg: st.error("Error: 'street' directory is missing or empty. Please add background images.") st.stop() else: imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg] imgList = [img for img in imgList if img is not None] indexImg = 0 output_text = "" if "output_text" not in st.session_state: st.session_state["output_text"] = "" # Video Frame Callback def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: global indexImg, output_text img = frame.to_ndarray(format="bgr24") img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Process the frame with MediaPipe result = hands.process(img_rgb) detections = [] if result.multi_hand_landmarks: for hand_landmarks in result.multi_hand_landmarks: mp_drawing.draw_landmarks( img, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2) ) # Extract bounding box for detection info x_min, y_min = 1.0, 1.0 x_max, y_max = 0.0, 0.0 for lm in hand_landmarks.landmark: x_min = min(x_min, lm.x) y_min = min(y_min, lm.y) x_max = max(x_max, lm.x) y_max = max(y_max, lm.y) h, w, _ = img.shape bbox = np.array([int(x_min * w), int(y_min * h), int((x_max - x_min) * w), int((y_max - y_min) * h)]) detections.append(Detection(label="Hand", score=1.0, box=bbox)) logger.info(f"Detected {len(detections)} hand(s).") else: logger.info("No hands detected.") result_queue.put(detections) st.session_state["output_text"] = output_text return av.VideoFrame.from_ndarray(img, format="bgr24") # WebRTC Streamer webrtc_streamer( key="virtual-keyboard", mode=WebRtcMode.SENDRECV, rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"}, media_stream_constraints={"video": True, "audio": False}, video_frame_callback=video_frame_callback, async_processing=True, )