Spaces:
Runtime error
Runtime error
Commit
·
165a317
1
Parent(s):
2935628
Add application1 file
Browse files- app.py +92 -4
- requirements.txt +0 -0
app.py
CHANGED
|
@@ -1,7 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoProcessor, TrainingArguments, LlavaForConditionalGeneration, BitsAndBytesConfig
|
| 3 |
+
from trl import SFTTrainer
|
| 4 |
+
from peft import LoraConfig, PeftModel
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import requests
|
| 7 |
+
from deep_translator import GoogleTranslator
|
| 8 |
import gradio as gr
|
| 9 |
+
import PIL.Image
|
| 10 |
+
import base64
|
| 11 |
+
import time
|
| 12 |
+
import os
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
|
| 16 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 17 |
+
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16)
|
| 18 |
+
|
| 19 |
+
# Load the PEFT Lora adapter
|
| 20 |
+
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
|
| 21 |
+
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
|
| 22 |
+
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
|
| 23 |
+
|
| 24 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
|
| 25 |
+
|
| 26 |
+
# Function to translate text from Bengali to English
|
| 27 |
+
def deep_translator_bn_en(input_sentence):
|
| 28 |
+
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence)
|
| 29 |
+
return english_translation
|
| 30 |
+
|
| 31 |
+
# Function to translate text from English to Bengali
|
| 32 |
+
def deep_translator_en_bn(input_sentence):
|
| 33 |
+
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence)
|
| 34 |
+
return bengali_translation
|
| 35 |
+
|
| 36 |
+
def inference(image, image_prompt):
|
| 37 |
+
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:"
|
| 38 |
+
|
| 39 |
+
# Assuming your model can handle PIL images
|
| 40 |
+
image = image.convert("RGB") # Ensure image is RGB mode
|
| 41 |
+
|
| 42 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 43 |
+
generate_ids = base_model.generate(**inputs, max_new_tokens=15)
|
| 44 |
+
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 45 |
+
return decoded_response
|
| 46 |
+
|
| 47 |
+
def image_to_base64(image_path):
|
| 48 |
+
with open(image_path, 'rb') as img:
|
| 49 |
+
encoded_string = base64.b64encode(img.read())
|
| 50 |
+
return encoded_string.decode('utf-8')
|
| 51 |
+
|
| 52 |
+
# Function that takes User Inputs and displays it on ChatUI
|
| 53 |
+
def query_message(history,txt,img):
|
| 54 |
+
image_prompt = deep_translator_bn_en(txt)
|
| 55 |
+
history += [(image_prompt,None)]
|
| 56 |
+
base64 = image_to_base64(img)
|
| 57 |
+
data_url = f"data:image/jpeg;base64,{base64}"
|
| 58 |
+
history += [(f"{image_prompt} ", None)]
|
| 59 |
+
return history
|
| 60 |
+
|
| 61 |
+
# Function that takes User Inputs, generates Response and displays on Chat UI
|
| 62 |
+
def llm_response(history,text,img):
|
| 63 |
+
image_prompt = deep_translator_bn_en(text)
|
| 64 |
+
response = inference(img,image_prompt)
|
| 65 |
+
assistant_index = response.find("ASSISTANT:")
|
| 66 |
+
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
|
| 67 |
+
output = deep_translator_en_bn(extracted_string)
|
| 68 |
+
history += [(text,output)]
|
| 69 |
+
return history
|
| 70 |
+
|
| 71 |
+
# Interface Code
|
| 72 |
+
with gr.Blocks() as app:
|
| 73 |
+
with gr.Row():
|
| 74 |
+
image_box = gr.Image(type="pil")
|
| 75 |
+
|
| 76 |
+
chatbot = gr.Chatbot(
|
| 77 |
+
scale = 2,
|
| 78 |
+
height=500
|
| 79 |
+
)
|
| 80 |
+
text_box = gr.Textbox(
|
| 81 |
+
placeholder="Enter text and press enter, or upload an image",
|
| 82 |
+
container=False,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
btn = gr.Button("Submit")
|
| 86 |
+
clicked = btn.click(query_message,
|
| 87 |
+
[chatbot,text_box,image_box],
|
| 88 |
+
chatbot
|
| 89 |
+
).then(llm_response,
|
| 90 |
+
[chatbot,text_box,image_box],
|
| 91 |
+
chatbot
|
| 92 |
+
)
|
| 93 |
+
app.queue()
|
| 94 |
+
app.launch(debug=True,share=True)
|
| 95 |
+
|
requirements.txt
ADDED
|
Binary file (3.74 kB). View file
|
|
|