import torch from transformers import AutoProcessor,LlavaForConditionalGeneration, BitsAndBytesConfig from peft import PeftModel from PIL import Image from deep_translator import GoogleTranslator import gradio as gr from transformers import TextIteratorStreamer from threading import Thread import time # model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl" # quantization_config = BitsAndBytesConfig(load_in_4bit=True) # base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16) # # Load the PEFT Lora adapter # peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3" # peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter") # base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter") # processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl") # # Function to translate text from Bengali to English # def deep_translator_bn_en(input_sentence): # english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence) # return english_translation # # Function to translate text from English to Bengali # def deep_translator_en_bn(input_sentence): # bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence) # return bengali_translation # def bot_streaming(message, history): # print(message) # if message["files"]: # # message["files"][-1] is a Dict or just a string # if type(message["files"][-1]) == dict: # image = message["files"][-1]["path"] # else: # image = message["files"][-1] # else: # # if there's no image uploaded for this turn, look for images in the past turns # # kept inside tuples, take the last one # for hist in history: # if type(hist[0]) == tuple: # image = hist[0][0] # break # Exit the loop after finding the first image # try: # if image is None: # # Handle the case where image is None # raise Exception("You need to upload an image for LLaVA to work.") # except NameError: # # Handle the case where 'image' is not defined at all # raise Exception("You need to upload an image for LLaVA to work.") # # Translate Bengali input to English before processing # english_prompt = deep_translator_bn_en(message['text']) # prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{english_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # # print(f"prompt: {prompt}") # image = Image.open(image) # inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) # streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) # generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False) # thread = Thread(target=base_model.generate, kwargs=generation_kwargs) # thread.start() # text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{english_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # # print(f"text_prompt: {text_prompt}") # buffer = "" # time.sleep(0.5) # for new_text in streamer: # # find <|eot_id|> and remove it from the new_text # if "<|eot_id|>" in new_text: # new_text = new_text.split("<|eot_id|>")[0] # buffer += new_text # # generated_text_without_prompt = buffer[len(text_prompt):] # generated_text_without_prompt = buffer # # Translate English response from LLaVA back to Bengali # bengali_response = deep_translator_en_bn(generated_text_without_prompt) # # print(f"new_text: {bengali_response}") # yield bengali_response # thread.join() # Interface Code # chatbot=gr.Chatbot(scale=1) # chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) # with gr.Blocks(fill_height=True, ) as app: # gr.ChatInterface( # fn=bot_streaming, # description="Try Cleaveland Chatbot. Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", # stop_btn="Stop Generation", # multimodal=True, # textbox=chat_input, # chatbot=chatbot, # ) # app.queue(api_open=False) # app.launch(show_api=False, share=True)