Praveen998 commited on
Commit
90f3345
·
1 Parent(s): 8247e44

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +43 -112
app.py CHANGED
@@ -26,80 +26,34 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" All Graphs")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- st.line_chart(
36
- pd.DataFrame(
37
- {
38
- "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
39
- "Adj Close"
40
- ],
41
- "Google": yf.download(
42
- "GOOGL", start="2023-01-01", end="2023-07-31"
43
- )["Adj Close"],
44
- "Microsoft": yf.download(
45
- "MSFT", start="2023-01-01", end="2023-07-31"
46
- )["Adj Close"],
47
- }
48
- )
49
- )
50
  with col2:
51
- data = pd.DataFrame(
52
- {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
53
- )
54
- st.area_chart(data)
55
- st.plotly_chart(
56
- ff.create_distplot(
57
- [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
58
- ["Negative Shift", "Normal", "Positive Shift"],
59
- bin_size=[0.1, 0.25, 0.5],
60
- ),
61
- use_container_width=True,
62
- )
63
- source = vds.cars()
64
- chart = {
65
- "mark": "point",
66
- "encoding": {
67
- "x": {"field": "Horsepower", "type": "quantitative"},
68
- "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
69
- "color": {"field": "Origin", "type": "nominal"},
70
- "shape": {"field": "Origin", "type": "nominal"},
71
- },
72
- }
73
- tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
74
- with tab1:
75
- st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
76
- with tab2:
77
- st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
78
- st.altair_chart(
79
- alt.Chart(
80
- pd.DataFrame(
81
- {
82
- "x": np.random.rand(50),
83
- "y": np.random.rand(50),
84
- "size": np.random.randint(10, 100, 50),
85
- "color": np.random.rand(50),
86
- }
87
- )
88
- )
89
- .mark_circle()
90
- .encode(
91
- x="x",
92
- y="y",
93
- size="size",
94
- color="color",
95
- tooltip=["x", "y", "size", "color"],
96
- )
97
- .properties(width=600, height=400),
98
- use_container_width=True,
99
- )
100
- st.bar_chart(
101
- pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
102
- )
103
  st.pydeck_chart(
104
  pdk.Deck(
105
  map_style=None,
@@ -133,52 +87,29 @@ def main():
133
  ],
134
  )
135
  )
136
- import datetime
137
-
138
- np.random.seed(1)
139
- programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
140
- base = datetime.datetime.today()
141
- dates = base - np.arange(180) * datetime.timedelta(days=1)
142
- z = np.random.poisson(size=(len(programmers), len(dates)))
143
- fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
144
- fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
145
- st.plotly_chart(fig)
146
- (
147
- col1,
148
- col2,
149
- ) = st.columns(2)
150
- with col1:
151
- df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
152
- fig = px.pie(
153
- df,
154
- values="pop",
155
- names="country",
156
- title="Population of American continent",
157
- hover_data=["lifeExp"],
158
- labels={"lifeExp": "life expectancy"},
159
- )
160
- fig.update_traces(textposition="inside", textinfo="percent+label")
161
- st.plotly_chart(fig)
162
- with col2:
163
- fig = go.Figure(
164
- go.Sunburst(
165
- labels=[
166
- "Eve",
167
- "Cain",
168
- "Seth",
169
- "Enos",
170
- "Noam",
171
- "Abel",
172
- "Awan",
173
- "Enoch",
174
- "Azura",
175
- ],
176
- parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
177
- values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
178
  )
179
  )
180
- fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
181
- st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
182
 
183
 
184
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" US Real Estate Data and Market Trends")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
+ option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  with col2:
37
+ option = st.selectbox(" Current / Historical", [" Current ", " Historical"])
38
+ (
39
+ col1,
40
+ col2,
41
+ ) = st.columns(2)
42
+ with col1:
43
+ option = st.selectbox(" Median / Mean", [" Median ", " Mean"])
44
+ with col2:
45
+ option = st.selectbox(" San Francisco", [" San Francisco"])
46
+ (
47
+ col1,
48
+ col2,
49
+ ) = st.columns(2)
50
+ with col1:
51
+ selected_color = st.color_picker(" Choose a palate", "#FF0000")
52
+ with col2:
53
+ value = st.slider(" No of colors", min_value=0, max_value=100, value=50, key=48)
54
+ if st.checkbox(" Show raw data"):
55
+ st.write("Checkbox checked!")
56
+ st.subheader(" Global 3D Visualization")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  st.pydeck_chart(
58
  pdk.Deck(
59
  map_style=None,
 
87
  ],
88
  )
89
  )
90
+ st.subheader(" 2D Visualization")
91
+ st.altair_chart(
92
+ alt.Chart(
93
+ pd.DataFrame(
94
+ {
95
+ "x": np.random.rand(50),
96
+ "y": np.random.rand(50),
97
+ "size": np.random.randint(10, 100, 50),
98
+ "color": np.random.rand(50),
99
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  )
101
  )
102
+ .mark_circle()
103
+ .encode(
104
+ x="x",
105
+ y="y",
106
+ size="size",
107
+ color="color",
108
+ tooltip=["x", "y", "size", "color"],
109
+ )
110
+ .properties(width=600, height=400),
111
+ use_container_width=True,
112
+ )
113
 
114
 
115
  if __name__ == "__main__":