Praveen998 commited on
Commit
a1fcc21
·
1 Parent(s): 54a9b1e

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +99 -72
app.py CHANGED
@@ -26,85 +26,42 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" Corona Dashboard")
 
 
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- option = st.selectbox(" San Francisco", [" San Francisco"])
36
  with col2:
37
- option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
38
- if st.checkbox(" Show raw data"):
39
- st.write("Checkbox checked!")
40
- if st.button(" Visualize"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  st.write("Button clicked!")
42
- st.subheader(" Global Data")
43
- df = pd.read_csv(
44
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
45
- encoding="iso-8859-1",
46
- )
47
- freq = df
48
- freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
49
- df_v = pd.read_csv(
50
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
51
- )
52
- fig = make_subplots(
53
- rows=2,
54
- cols=2,
55
- column_widths=[0.6, 0.4],
56
- row_heights=[0.4, 0.6],
57
- specs=[
58
- [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
59
- [None, {"type": "surface"}],
60
- ],
61
- )
62
- fig.add_trace(
63
- go.Scattergeo(
64
- lat=df["Latitude"],
65
- lon=df["Longitude"],
66
- mode="markers",
67
- hoverinfo="text",
68
- showlegend=False,
69
- marker=dict(color="crimson", size=4, opacity=0.8),
70
- ),
71
- row=1,
72
- col=1,
73
- )
74
- fig.add_trace(
75
- go.Bar(
76
- x=freq["x"][0:10],
77
- y=freq["Country"][0:10],
78
- marker=dict(color="crimson"),
79
- showlegend=False,
80
- ),
81
- row=1,
82
- col=2,
83
- )
84
- fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
85
- fig.update_geos(
86
- projection_type="orthographic",
87
- landcolor="white",
88
- oceancolor="MidnightBlue",
89
- showocean=True,
90
- lakecolor="LightBlue",
91
- )
92
- fig.update_xaxes(tickangle=45)
93
- fig.update_layout(
94
- template="plotly_dark",
95
- margin=dict(r=10, t=25, b=40, l=60),
96
- annotations=[
97
- dict(
98
- text="Source: NOAA",
99
- showarrow=False,
100
- xref="paper",
101
- yref="paper",
102
- x=0,
103
- y=0,
104
- )
105
- ],
106
- )
107
- st.plotly_chart(fig)
108
  (
109
  col1,
110
  col2,
@@ -117,6 +74,41 @@ def main():
117
  "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
118
  }
119
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  with col2:
121
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
122
  fig = px.pie(
@@ -129,6 +121,41 @@ def main():
129
  )
130
  fig.update_traces(textposition="inside", textinfo="percent+label")
131
  st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
 
134
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.write("Hello, world!")
30
+ st.header(" Al Generated this app - spotify recommendations")
31
+ st.subheader(" this application contains the auto generated layout")
32
  (
33
  col1,
34
  col2,
35
  ) = st.columns(2)
36
  with col1:
37
+ st.write("Hello, world!")
38
  with col2:
39
+ option = st.selectbox(
40
+ " gender / male / female", [" gender ", " male ", " female"]
41
+ )
42
+ (
43
+ col1,
44
+ col2,
45
+ ) = st.columns(2)
46
+ with col1:
47
+ value = st.slider(
48
+ " max predictions", min_value=0, max_value=100, value=50, key=39
49
+ )
50
+ with col2:
51
+ value = st.slider(
52
+ " num categories", min_value=0, max_value=100, value=50, key=81
53
+ )
54
+ (
55
+ col1,
56
+ col2,
57
+ ) = st.columns(2)
58
+ with col1:
59
+ option = st.radio("Choose an option:", ["Option 1", "Option 2", "Option 3"])
60
+ with col2:
61
+ if st.checkbox("Check me"):
62
+ st.write("Checkbox checked!")
63
+ if st.button(" generate recommendations"):
64
  st.write("Button clicked!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  (
66
  col1,
67
  col2,
 
74
  "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
75
  }
76
  )
77
+ with col2:
78
+ st.line_chart(
79
+ pd.DataFrame(
80
+ {
81
+ "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
82
+ "Adj Close"
83
+ ],
84
+ "Google": yf.download(
85
+ "GOOGL", start="2023-01-01", end="2023-07-31"
86
+ )["Adj Close"],
87
+ "Microsoft": yf.download(
88
+ "MSFT", start="2023-01-01", end="2023-07-31"
89
+ )["Adj Close"],
90
+ }
91
+ )
92
+ )
93
+ (
94
+ col1,
95
+ col2,
96
+ ) = st.columns(2)
97
+ with col1:
98
+ data = pd.DataFrame(
99
+ {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
100
+ )
101
+ st.area_chart(data)
102
+ with col2:
103
+ st.bar_chart(
104
+ pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
105
+ )
106
+ (
107
+ col1,
108
+ col2,
109
+ ) = st.columns(2)
110
+ with col1:
111
+ st.write("Hello, world!")
112
  with col2:
113
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
114
  fig = px.pie(
 
121
  )
122
  fig.update_traces(textposition="inside", textinfo="percent+label")
123
  st.plotly_chart(fig)
124
+ source = vds.cars()
125
+ chart = {
126
+ "mark": "point",
127
+ "encoding": {
128
+ "x": {"field": "Horsepower", "type": "quantitative"},
129
+ "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
130
+ "color": {"field": "Origin", "type": "nominal"},
131
+ "shape": {"field": "Origin", "type": "nominal"},
132
+ },
133
+ }
134
+ tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
135
+ with tab1:
136
+ st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
137
+ with tab2:
138
+ st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
139
+ (
140
+ col1,
141
+ col2,
142
+ ) = st.columns(2)
143
+ with col1:
144
+ st.video("https://www.youtube.com/watch?v=50hVvC7gMR8&t=5s", format="video/mp4")
145
+ with col2:
146
+ st.image(
147
+ "https://assets-global.website-files.com/59e16042ec229e00016d3a66/6441d5f76d21e1e4dee9ffa2_Gen%20AI%20blog_Blog%20hero.png",
148
+ caption="Image Caption",
149
+ )
150
+ st.plotly_chart(
151
+ ff.create_distplot(
152
+ [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
153
+ ["Negative Shift", "Normal", "Positive Shift"],
154
+ bin_size=[0.1, 0.25, 0.5],
155
+ ),
156
+ use_container_width=True,
157
+ )
158
+ st.header(" auto generated by sketch2streamiit")
159
 
160
 
161
  if __name__ == "__main__":