Spaces:
Build error
Build error
## Imports | |
import pandas as pd | |
import numpy as np | |
import tensorflow as tf | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.model_selection import train_test_split | |
from sklearn.model_selection import GridSearchCV | |
## Load Dataset | |
data = pd.read_csv('/content/drive/MyDrive/LoanApprovalPrediction.csv') | |
## Data Preprocessing | |
# Replace NaN with a estimate value accordingly | |
# Fill empty values of Dependant,Loan Amount,Loan_Amount_Term as it's numeric and float dtype | |
data['Dependents'].fillna(data['Dependents'].median(),inplace=True) | |
data['LoanAmount'].fillna(data['LoanAmount'].median(),inplace=True) | |
data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].median(),inplace=True) | |
# Fill Empty Credit History with mode as its categorical | |
data['Credit_History'].fillna(data['Credit_History'].mode()[0],inplace=True) | |
# Dropping UnWanted Loan_ID column | |
data.drop(['Loan_ID'],axis=1,inplace=True) | |
# Changing Data Types of Columns | |
data['Dependents']=data['Dependents'].astype(int) | |
data['ApplicantIncome']=data['ApplicantIncome'].astype(int) | |
data['CoapplicantIncome']=data['CoapplicantIncome'].astype(int) | |
data['LoanAmount']=data['LoanAmount'].astype(int) | |
data['Loan_Amount_Term']=data['Loan_Amount_Term'].astype(int) | |
data['Credit_History'] = data['Credit_History'].astype(int) | |
# Categorical to Numerical Value Conversion | |
data['Gender']=data.Gender.apply(lambda x:1 if x=='Male' else 0 ) | |
data['Education'] = data.Education.apply(lambda x:0 if x=='Graduate' else 1) | |
data['Married'] = data.Education.apply(lambda x:0 if x=='Yes' else 1) | |
data['Self_Employed'] = data.Education.apply(lambda x:0 if x=='Yes' else 1) | |
Prop_area = {'Urban':0,'Semiurban':1,'Rural':2} | |
data['Property_Area'] = data['Property_Area'].map(Prop_area) | |
## Train Test Split | |
X=data.drop('Loan_Status',1) | |
y=data.Loan_Status.apply(lambda x:0 if x=='Y' else 1) # Can use pd.get_dummies to reduce code | |
X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=42) | |
## Parameter Efficient Logestic Regression Model Training By GridSearchCV | |
LG = LogisticRegression() | |
parameter = {'penalty':['l1','l2','elasticnet'],'C':[1,2,5,10,20,25,30,40,50],'max_iter':[100,150,200,250]} | |
Eff_log_reg=GridSearchCV(estimator=LG,param_grid=parameter,scoring='accuracy',cv=5) | |
Log_Model = Eff_log_reg.fit(X_train,y_train) | |
## Gradio App | |
def input(gender,married,dependents,education,self_employed,app_income,co_app_income,loan_amount,Loan_term,credit,area): | |
input = [gender,married,dependents,education,self_employed,app_income,co_app_income,loan_amount,Loan_term,credit,area] | |
output = lm.predict([input]) | |
return int(output) | |
demo = gr.Interface( | |
input, | |
[ | |
gradio.Checkbox(['Male','Female'],label=Gender,max_choice=1), | |
gr.Slider(minimum=600, maximum=7000, randomize=True, step = 1,label="Living Area"), | |
gr.Slider(minimum=1, maximum=8, randomize=True,step = 1, label="Number of Bedrooms"), | |
gr.Slider(minimum=1, maximum=5, randomize=True,step = 1, label="Number of Bathrooms"), | |
gr.Slider(minimum=1,maximum=3.5,randomize=True,step=0.5,label="Number of stories/Floors") | |
], | |
"number", | |
examples=[ | |
[1000, 600, 1, 1, 1], | |
[2000,1200,2,3,1], | |
[4000,1900,2,3,2], | |
[28000,3000,5,3,3], | |
], |