## Imports import pandas as pd import numpy as np import tensorflow as tf from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV ## Load Dataset data = pd.read_csv('/content/drive/MyDrive/LoanApprovalPrediction.csv') ## Data Preprocessing # Replace NaN with a estimate value accordingly # Fill empty values of Dependant,Loan Amount,Loan_Amount_Term as it's numeric and float dtype data['Dependents'].fillna(data['Dependents'].median(),inplace=True) data['LoanAmount'].fillna(data['LoanAmount'].median(),inplace=True) data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].median(),inplace=True) # Fill Empty Credit History with mode as its categorical data['Credit_History'].fillna(data['Credit_History'].mode()[0],inplace=True) # Dropping UnWanted Loan_ID column data.drop(['Loan_ID'],axis=1,inplace=True) # Changing Data Types of Columns data['Dependents']=data['Dependents'].astype(int) data['ApplicantIncome']=data['ApplicantIncome'].astype(int) data['CoapplicantIncome']=data['CoapplicantIncome'].astype(int) data['LoanAmount']=data['LoanAmount'].astype(int) data['Loan_Amount_Term']=data['Loan_Amount_Term'].astype(int) data['Credit_History'] = data['Credit_History'].astype(int) # Categorical to Numerical Value Conversion data['Gender']=data.Gender.apply(lambda x:1 if x=='Male' else 0 ) data['Education'] = data.Education.apply(lambda x:0 if x=='Graduate' else 1) data['Married'] = data.Education.apply(lambda x:0 if x=='Yes' else 1) data['Self_Employed'] = data.Education.apply(lambda x:0 if x=='Yes' else 1) Prop_area = {'Urban':0,'Semiurban':1,'Rural':2} data['Property_Area'] = data['Property_Area'].map(Prop_area) ## Train Test Split X=data.drop('Loan_Status',1) y=data.Loan_Status.apply(lambda x:0 if x=='Y' else 1) # Can use pd.get_dummies to reduce code X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=42) ## Parameter Efficient Logestic Regression Model Training By GridSearchCV LG = LogisticRegression() parameter = {'penalty':['l1','l2','elasticnet'],'C':[1,2,5,10,20,25,30,40,50],'max_iter':[100,150,200,250]} Eff_log_reg=GridSearchCV(estimator=LG,param_grid=parameter,scoring='accuracy',cv=5) Log_Model = Eff_log_reg.fit(X_train,y_train) ## Gradio App def input(gender,married,dependents,education,self_employed,app_income,co_app_income,loan_amount,Loan_term,credit,area): input = [gender,married,dependents,education,self_employed,app_income,co_app_income,loan_amount,Loan_term,credit,area] output = lm.predict([input]) return int(output) demo = gr.Interface( input, [ gradio.Checkbox(['Male','Female'],label=Gender,max_choice=1), gr.Slider(minimum=600, maximum=7000, randomize=True, step = 1,label="Living Area"), gr.Slider(minimum=1, maximum=8, randomize=True,step = 1, label="Number of Bedrooms"), gr.Slider(minimum=1, maximum=5, randomize=True,step = 1, label="Number of Bathrooms"), gr.Slider(minimum=1,maximum=3.5,randomize=True,step=0.5,label="Number of stories/Floors") ], "number", examples=[ [1000, 600, 1, 1, 1], [2000,1200,2,3,1], [4000,1900,2,3,2], [28000,3000,5,3,3], ],