Pravincoder
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,21 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
5 |
import pickle
|
6 |
|
7 |
# Load the trained model
|
8 |
model = pickle.load(open('model.pkl','rb'))
|
9 |
|
10 |
def spam_detection(message):
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Preprocess the input message
|
|
|
12 |
sequence = tokenizer.texts_to_sequences([message])
|
13 |
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)
|
14 |
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
from tensorflow.keras.preprocessing.text import Token
|
6 |
import pickle
|
7 |
|
8 |
# Load the trained model
|
9 |
model = pickle.load(open('model.pkl','rb'))
|
10 |
|
11 |
def spam_detection(message):
|
12 |
+
vocab_size = 1000
|
13 |
+
embedding_dim = 16
|
14 |
+
max_length = 100
|
15 |
+
trunc_type='post'
|
16 |
+
padding_type='post'
|
17 |
+
oov_tok = "<OOV>"
|
18 |
# Preprocess the input message
|
19 |
+
tokenizer = Tokenizer(num_words = vocab_size, oov_token=oov_tok)
|
20 |
sequence = tokenizer.texts_to_sequences([message])
|
21 |
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)
|
22 |
|