Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,55 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
|
4 |
-
# Use DuckDB instead of SQLite for ChromaDB
|
5 |
-
import chromadb
|
6 |
-
from chromadb.config import Settings
|
7 |
-
# Import your RAG components
|
8 |
-
from rag import build_chroma_store, pre_processing_csv, ask_query
|
9 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
13 |
|
|
|
14 |
@st.cache_resource
|
15 |
-
def load_data(
|
16 |
-
""
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
# Streamlit UI
|
32 |
st.title("π§ RAG Model Query Interface")
|
33 |
-
st.write("Enter a query to
|
34 |
|
35 |
-
# Query input
|
36 |
-
user_query = st.text_input("
|
37 |
|
38 |
-
if st.button("Submit"):
|
39 |
if user_query:
|
40 |
-
|
|
|
|
|
41 |
if results:
|
42 |
-
st.
|
43 |
-
st.write("=" * 80)
|
44 |
for i, (doc, meta) in enumerate(results, 1):
|
45 |
-
st.markdown(f"
|
46 |
-
st.markdown(f"
|
47 |
-
st.markdown(f"
|
48 |
-
st.markdown(f"
|
49 |
-
st.
|
50 |
else:
|
51 |
-
st.
|
52 |
else:
|
53 |
-
st.warning("Please enter a query.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from rag import pre_processing_csv, build_pinecone_store, ask_query
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
|
7 |
+
# Load environment variables from .env file
|
8 |
+
load_dotenv()
|
9 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
10 |
+
PINECONE_ENV = os.getenv("PINECONE_ENV") # e.g., "us-west-2"
|
11 |
+
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "shl-test-index")
|
12 |
|
13 |
+
# Cache data processing and vector store creation for efficiency
|
14 |
@st.cache_resource
|
15 |
+
def load_data():
|
16 |
+
csv_path = "shl_products.csv" # Update the path if necessary
|
17 |
+
# Step 1: Preprocess the CSV and create document chunks
|
18 |
+
documents, metadatas = pre_processing_csv(csv_path)
|
19 |
+
|
20 |
+
# Load the SentenceTransformer model (this may take some time at first run)
|
21 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
22 |
+
|
23 |
+
# Step 2: Build the Pinecone vector store with embeddings
|
24 |
+
index, model, embeddings, documents, metadatas = build_pinecone_store(
|
25 |
+
documents, metadatas, model, PINECONE_INDEX_NAME, PINECONE_API_KEY, PINECONE_ENV
|
26 |
+
)
|
27 |
+
return index, model
|
28 |
+
|
29 |
+
# Load and cache the data, index, and model
|
30 |
+
index, model = load_data()
|
31 |
|
32 |
# Streamlit UI
|
33 |
st.title("π§ RAG Model Query Interface")
|
34 |
+
st.write("Enter a query to retrieve relevant SHL assessments.")
|
35 |
|
36 |
+
# Query input widget
|
37 |
+
user_query = st.text_input("Your query:")
|
38 |
|
39 |
+
if st.button("Submit Query"):
|
40 |
if user_query:
|
41 |
+
# Step 3: Query the RAG model using the Pinecone index
|
42 |
+
results = ask_query(user_query, model, index, k=10)
|
43 |
+
|
44 |
if results:
|
45 |
+
st.markdown(f"### Results for: `{user_query}`")
|
|
|
46 |
for i, (doc, meta) in enumerate(results, 1):
|
47 |
+
st.markdown(f"**Result {i}:**")
|
48 |
+
st.markdown(f"**Test Name:** {meta.get('Test Name', '')}")
|
49 |
+
st.markdown(f"**Test Link:** [SHL Link](https://www.shl.com{meta.get('Test Link', '')})")
|
50 |
+
st.markdown(f"**Chunk:** {doc}")
|
51 |
+
st.markdown("---")
|
52 |
else:
|
53 |
+
st.info("No results found. Please try a different query.")
|
54 |
else:
|
55 |
+
st.warning("Please enter a query to search.")
|