Preetham04 commited on
Commit
02a67dd
·
verified ·
1 Parent(s): c80b2db

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -50
app.py CHANGED
@@ -1,63 +1,55 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
61
 
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.ipynb
3
 
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1qIFntwH-_zF7GkQbgjKoXMXnQpZ4HVse
8
  """
 
 
 
9
 
10
+ import gradio as gr
11
+ import streamlit as st
12
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
13
+
14
+ # Load the base model
15
+ base_model_name = "Preetham04/sentiment-analysis"
16
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
17
+ model = AutoModelForSequenceClassification.from_pretrained(base_model_name)
18
 
19
+ # Load the adapter configuration and model files
20
+ adapter_config_path = "config.json"
21
+ adapter_model_path = "model.safetensors"
 
 
 
 
 
 
22
 
23
+ # Load the adapter into the model
24
+ adapter_name = "custom_adapter" # Define your adapter name
25
+ model.load_adapter(adapter_config_path, model_file=adapter_model_path, load_as=adapter_name)
 
 
26
 
27
+ # Activate the adapter
28
+ model.set_active_adapters(adapter_name)
29
 
30
+ st.title("🤖 Chatbot with Adapter-Enhanced Model")
31
+ st.write("Interact with your custom adapter-enhanced model. Type a message and get responses!")
32
 
33
+ # Initialize or retrieve the chat history
34
+ if 'history' not in st.session_state:
35
+ st.session_state['history'] = []
 
 
 
 
 
36
 
37
+ # Initialize Gradio
38
+ chatbot = Gradio(model=model, tokenizer=tokenizer)
39
 
40
+ # Define responses for greetings
41
+ @chatbot.on_event("welcome")
42
+ def welcome_handler(payload):
43
+ return "Welcome! Type a message and get responses from the chatbot."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ # Define responses for user messages
46
+ @chatbot.on_message
47
+ def message_handler(payload):
48
+ user_input = payload["message"]
49
+ response = chatbot.generate_response(user_input)
50
+ return response
51
 
52
+ # Run Gradio
53
  if __name__ == "__main__":
54
+ chatbot.run()
55
+