File size: 1,151 Bytes
a4671ce
f18eb47
24304e1
675211a
24304e1
f18eb47
 
b0fdb33
24304e1
f18eb47
 
a837e17
f18eb47
 
24304e1
 
 
a4671ce
 
c6d4788
a4671ce
 
 
 
c1f8577
a4671ce
 
 
a3ade2b
1f578c8
 
a4671ce
 
 
 
 
 
 
 
 
 
 
 
6a55023
a4671ce
af4e1f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""import gradio as gr
from transformers import pipeline

pipeline = pipeline(task="text-generation", model="Preetham04/text-generation")

def predict(input_img):
    predictions = pipeline(input_img)
    return  {p["title"] for p in predictions}

gradio_app = gr.Interface(
    predict,
    inputs="textbox", 
    outputs="text",
    title="Text-generation",
)

if __name__ == "__main__":
    gradio_app.launch(share=True)
"""

import gradio as gr

from transformers import pipeline

pipe = pipeline("text-generation", model="Preetham04/generation_model_2")


def generate(text):
    predictions = pipe(text)
    print(predictions)  # To see the structure of predictions
    return {p["generated_text"] for p in predictions}


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            find = gr.Textbox(label="input text")
            search_btn = gr.Button(value="SEARCH")
        with gr.Column():
            found = gr.Textbox(label="Related searches")

    search_btn.click(generate, inputs=find, outputs=found)
    examples = gr.Examples(examples=["SDE", "UX"],
                           inputs=[find])

demo.launch()