"""import gradio as gr from transformers import pipeline pipeline = pipeline(task="text-generation", model="Preetham04/text-generation") def predict(input_img): predictions = pipeline(input_img) return {p["title"] for p in predictions} gradio_app = gr.Interface( predict, inputs="textbox", outputs="text", title="Text-generation", ) if __name__ == "__main__": gradio_app.launch(share=True) """ import gradio as gr from transformers import pipeline pipe = pipeline("text-generation", model="Preetham04/generation_model_2") def generate(text): predictions = pipe(text) print(predictions) # To see the structure of predictions return {p["generated_text"] for p in predictions} with gr.Blocks() as demo: with gr.Row(): with gr.Column(): find = gr.Textbox(label="input text") search_btn = gr.Button(value="SEARCH") with gr.Column(): found = gr.Textbox(label="Related searches") search_btn.click(generate, inputs=find, outputs=found) examples = gr.Examples(examples=["SDE", "UX"], inputs=[find]) demo.launch()