File size: 6,823 Bytes
7acf6af
 
7db6cdc
 
 
 
7acf6af
d20f3c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db6cdc
6cf1fe6
7db6cdc
7acf6af
7db6cdc
 
7acf6af
 
7db6cdc
 
7acf6af
 
7db6cdc
 
7acf6af
 
d20f3c3
7db6cdc
7acf6af
7db6cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20f3c3
7db6cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20f3c3
 
 
7db6cdc
 
 
7acf6af
 
7db6cdc
 
 
7668d5b
7db6cdc
 
 
 
 
 
 
 
 
 
 
d20f3c3
7db6cdc
 
d20f3c3
7db6cdc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import os
import sys
import json
import requests
import random

API_URL = ""


LA_SERVICE_URL_v1 = "http://bore.testsprep.online:8082/v1/chat/completions"
LA_SERVICE_URL_v2 = "http://bore.testsprep.online:8083/v1/chat/completions"
LA_SERVICE_URL_v3 = "http://bore.testsprep.online:8084/v1/chat/completions"
LA_SERVICE_URL_v4 = "http://bore.testsprep.online:8085/v1/chat/completions"

MODEL2SERVICE = {
    'LA-llama-3.1-7b-16k-sft-awq': LA_SERVICE_URL_v1,
    'LA-storm-llama-3.1-7b-16k-sft-awq': LA_SERVICE_URL_v2,
    'LA-cohere-aya-expanse-8b-16k-sft-awq': LA_SERVICE_URL_v3,
    'LA-qwen2.5-7b-16k-sft-awq': LA_SERVICE_URL_v4,
}

DISABLED = os.getenv("DISABLED") == 'True'
BEARER_TOKEN = "Prep@123"
NUM_THREADS = 16

SYSTEM_PROMPT = """Bạn là Trợ lý gia sư AI dạy ngôn ngữ Tiếng Anh, tên là Teacher Bee AI. Bạn được xây dựng bởi Prep Education để hướng dẫn học viên làm bài tập trên nền tảng Prepedu.com.
Bạn là một trợ lý thân thiện, tính cách tốt bụng và supportive. Giả sử bạn đang hướng dẫn, giải thích và trả lời câu hỏi cho một đứa trẻ 12 tuổi hoặc ở trình độ ngôn ngữ không cao hơn trình độ của người học."""


def exception_handler(exception_type, exception, traceback):
    print("%s: %s" % (exception_type.__name__, exception))


sys.excepthook = exception_handler
sys.tracebacklimit = 0


def predict(model_selector, system_prompt, inputs, top_p, temperature, max_tokens, chat_counter, chatbot, history, request: gr.Request):
    messages = [{"role": "system", "content": system_prompt}] if system_prompt else []

    headers = {
        "accept": "application/json",
        "Authorization": "Bearer Prep@123",
        "Content-Type": "application/json"
    }

    print("\n\n")
    print("="*100)
    print(f"chat_counter: {chat_counter}")
    print(f"history: {history}")

    if chat_counter != 0:
        for i, data in enumerate(history):
            if i % 2 == 0:
                role = 'user'
            else:
                role = 'assistant'

            messages.append({"role": role, "content": data})

        messages.append({"role": "user", "content": inputs})

        print(f"messages: {messages}")
        
        payload = {
            "model": "LA-SFT",
            "messages": messages,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "max_tokens": max_tokens,
            "n": 1,
            "stream": True,
            "presence_penalty": 0,
            "frequency_penalty": 0,
        }
    else:
        messages.append({"role": "user", "content": inputs})
        payload = {
            "model": "LA-SFT",
            "messages": messages,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "max_tokens": max_tokens,
            "n": 1,
            "stream": True,
            "presence_penalty": 0,
            "frequency_penalty": 0,
        }

    chat_counter += 1

    history.append(inputs)
    token_counter = 0
    partial_words = ""
    counter = 0

    try:
        if payload:
            print(f"\n>>> Payload: {payload}")
            # Gọi API với stream=True
            response = requests.post(MODEL2SERVICE[model_selector], headers=headers, json=payload, stream=True)

            for chunk in response.iter_lines():
                if counter == 0:
                    counter += 1
                    continue

                if chunk.decode():
                    chunk = chunk.decode()
                    if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
                        partial_words += json.loads(chunk[6:])['choices'][0]["delta"]["content"]
                        if token_counter == 0:
                            history.append(" " + partial_words)
                        else:
                            history[-1] = partial_words

                        token_counter += 1
                        yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False)
                            
    except Exception as e:
        print(f'error found: {e}')

    yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True)


def reset_textbox():
    return gr.update(value='', interactive=False), gr.update(interactive=False)


title = """<h1 align="center">Learning Assistant In-house Model</h1>"""
theme = gr.themes.Default(primary_hue="green")

with gr.Blocks(
        css="""#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
        theme=theme) as demo:
    gr.HTML(title)

    with gr.Column(elem_id="col_container", visible=True) as main_block:

        model_selector = gr.Dropdown(choices=list(MODEL2SERVICE.keys()), label="Select Model", value=list(MODEL2SERVICE.keys())[0])

        chatbot = gr.Chatbot(elem_id='chatbot')
        inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter")
        state = gr.State([])

        with gr.Row():
            with gr.Column(scale=7):
                b1 = gr.Button(visible=True)
            with gr.Column(scale=3):
                server_status_code = gr.Textbox(label="Status code from PREP server")

        system_prompt = gr.Textbox(placeholder="Enter system prompt here", label="System Prompt", value=SYSTEM_PROMPT)

        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider(minimum=0, maximum=1.0, value=0.9, step=0.05, interactive=True,
                              label="Top-p (nucleus sampling)")
            temperature = gr.Slider(minimum=0, maximum=5.0, value=0.1, step=0.1, interactive=True, label="Temperature")
            max_tokens = gr.Slider(minimum=0, maximum=16_000, value=4096, step=0.1, interactive=True, label="Max tokens")
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit(reset_textbox, [], [inputs, b1], queue=False)
    inputs.submit(predict, [model_selector, system_prompt, inputs, top_p, temperature, max_tokens, chat_counter, chatbot, state],
                  [chatbot, state, chat_counter, server_status_code, inputs, b1])
    b1.click(reset_textbox, [], [inputs, b1], queue=False)
    b1.click(predict, [model_selector, system_prompt, inputs, top_p, temperature, max_tokens, chat_counter, chatbot, state],
             [chatbot, state, chat_counter, server_status_code, inputs, b1])

    demo.queue(max_size=10, default_concurrency_limit=NUM_THREADS, api_open=False).launch(share=False)